Emerging Hybrid Metal Halide Glasses for Sensing and Displays
Abstract
:1. Introduction
2. Principles of Glass Formation and Manufacturing Techniques
3. Glassy Hybrid Metal Halides and Derivates
3.1. Pb-Based Hybrid Metal Halide Glasses
3.2. Sn-Based Hybrid Metal Halide Glasses
3.3. Mn-Based Hybrid Metal Halide Glasses
3.4. Sb-Based Hybrid Metal Halide Glasses
3.5. Other Hybrid Metal Halide Systems
3.6. Crystalline–Amorphous Heterojunction
4. Emerging Applications
4.1. Lighting and Displays
4.2. Information Storage
4.3. X-ray Imaging
4.4. Optics and Sensing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akkerman, Q.A.; Manna, L. What defines a halide perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhu, H.; Bai, S.; Reo, Y.; Caironi, M.; Petrozza, A.; Dou, L.; Noh, Y.-Y. High-performance metal halide perovskite transistors. Nat. Electron. 2023, 6, 559–571. [Google Scholar] [CrossRef]
- Wang, K.; Yang, D.; Wu, C.; Sanghadasa, M.; Priya, S. Recent progress in fundamental understanding of halide perovskite semiconductors. Prog. Mater Sci. 2019, 106, 100580. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Kanatzidis, M.G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, Q.; Wang, Y.; He, Y.; Wang, Q.; Wang, Y.; Chen, B. Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chin. Chem. Lett. 2024, 35, 109272. [Google Scholar] [CrossRef]
- Hu, M.; Zhu, Y.; Zhou, Z.; Hao, M.; Harnmanasvate, C.; Waiyawat, J.; Wang, Y.; Lu, J.; An, Q.; Li, X.; et al. Post-treatment of metal halide perovskites: From morphology control, defect passivation to band alignment and construction of heterostructures. Adv. Energy Mater. 2023, 13, 2301888. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, X.; Zhang, X.; Chen, B.; Suo, H.; Xing, Z.; Wang, Y.; Wei, H.L.; Chen, J.; Guo, Y.; et al. Emerging halide perovskite ferroelectrics. Adv. Mater. 2023, 35, e2205410. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Jie, J.; Tian, C.; Jia, R.; Wu, X.; Zhang, X.; Zhang, X. Metal halide perovskite single crystals toward electroluminescent applications. Adv. Funct. Mater. 2024, 2401189. [Google Scholar] [CrossRef]
- Han, B.; Zhao, J.; Luo, Z.; Cai, F.; Yuan, Z.; Zeng, H. Energy storage research of metal halide perovskites for rechargeable batteries. Nano Energy 2023, 115, 108646. [Google Scholar] [CrossRef]
- Kumar, V.; Kathiravan, A.; Jhonsi, M.A. Beyond lead halide perovskites: Crystal structure, bandgaps, photovoltaic properties and future stance of lead-free halide double perovskites. Nano Energy 2024, 125, 109523. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Mao, Y.; Guo, C.; Zhang, J.; Molokeev, M.S.; Xia, Z.; Zhang, X.M. Temperature/component-dependent luminescence in lead-free hybrid metal halides for temperature sensor and anti-counterfeiting. Adv. Funct. Mater. 2024, 2401860. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.M.; Shi, H.; Wang, Y.; Zhu, X.; Li, B.X.; Liu, S.; Chen, B.; Zhao, Q. Light management of metal halide scintillators for high-resolution X-ray imaging. Adv. Mater. 2024, 36, e2303738. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yan, D. Glassy inorganic-organic hybrid materials for photonic applications. Matter 2024, 7, 1950–1976. [Google Scholar] [CrossRef]
- Ye, C.; McHugh, L.N.; Chen, C.; Dutton, S.E.; Bennett, T.D. Glass formation in hybrid organic-inorganic perovskites. Angew. Chem. Int. Ed. 2023, 62, e202302406. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.B.; Wei, J.H.; Zhang, Z.Z.; He, Z.L.; Kuang, D.B. A melt-quenched luminescent glass of an organic-inorganic manganese halide as a large-area scintillator for radiation detection. Angew. Chem. Int. Ed. 2023, 62, e202216504. [Google Scholar] [CrossRef] [PubMed]
- Ju, D.; Zhou, M.; Ran, P.; Li, H.; Yang, Y.M.; Jiang, T. Melt-processable and thermally driven self-healing luminescent Cu(I) hybrid metal halides. ACS Mater. Lett. 2023, 5, 2978–2986. [Google Scholar] [CrossRef]
- Hleli, F.; Mercier, N.; Ben Haj Salah, M.; Allain, M.; Zouari, N.; Massuyeau, F.; Gautier, R. Chemistry in the molten state: Opportunities for designing and tuning the emission properties of halide perovskites. Inorg. Chem. 2023, 62, 14252–14260. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440. [Google Scholar] [CrossRef]
- Tosi, M.P. Ordering in metal halide melts. Annu. Rev. Phys. Chem. 1993, 44, 173–211. [Google Scholar] [CrossRef]
- Shirzad, K.; Viney, C. A critical review on applications of the Avrami equation beyond materials science. J. R. Soc. Interface 2023, 20, 20230242. [Google Scholar] [CrossRef]
- Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Jana, M.K.; Mitzi, D.B. Reversible crystal-glass transition in a metal halide perovskite. Adv. Mater. 2021, 33, e2005868. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mitzi, D.B. Crystallization kinetics in a glass-forming hybrid metal halide perovskite. ACS Mater. Lett. 2022, 4, 1840–1847. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.-D.; Han, X.-B.; Jing, C.-Q.; Chai, C.-Y.; Fan, C.-C.; Jin, M.-L.; Zhang, J.-M.; Zhang, W. Photoluminescence switching and non-volatile memory in hybrid metal-halide phase-change materials. ACS Mater. Lett. 2023, 6, 203–211. [Google Scholar] [CrossRef]
- Fulcher, G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 1969, 10, 473–488. [Google Scholar] [CrossRef]
- Singh, A.; Xie, Y.; Adams, C., 3rd; Bobay, B.G.; Mitzi, D.B. Controlling glass forming kinetics in 2D perovskites using organic cation isomers. Chem. Sci. 2024, 15, 6432–6444. [Google Scholar] [CrossRef]
- Joraid, A.A. Limitation of the Johnson-Mehl-Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta 2005, 436, 78–82. [Google Scholar] [CrossRef]
- Jana, M.K.; Song, R.; Liu, H.; Khanal, D.R.; Janke, S.M.; Zhao, R.; Liu, C.; Valy Vardeny, Z.; Blum, V.; Mitzi, D.B. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat. Commun. 2020, 11, 4699. [Google Scholar] [CrossRef]
- Ligero, R.A.; Vzquez, J.; Villares, P.; Jimnez-Garay, R. A study of the crystallization kinetics of some Cu-As-Te glasses. J. Mater. Sci. 1991, 26, 211–215. [Google Scholar] [CrossRef]
- Kissinger, H.E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nat. Bur. Stand. 1956, 57, 217–221. [Google Scholar] [CrossRef]
- Singh, A.; Kim, Y.; Henry, R.; Ade, H.; Mitzi, D.B. Study of glass formation and crystallization kinetics in a 2D metal halide perovskite using ultrafast calorimetry. J. Am. Chem. Soc. 2023, 145, 18623–18633. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.G.; Staveley, L.A.K. A study of the supercooling of drops of some molecular liquids. J. Chem. Soc. 1952, 4569–4577. [Google Scholar] [CrossRef]
- Turnbull, D. The subcooling of liquid metals. J. Appl. Phys. 1949, 20, 817. [Google Scholar] [CrossRef]
- Li, B.; Jin, J.; Yin, M.; Han, K.; Zhang, Y.; Zhang, X.; Zhang, A.; Xia, Z.; Xu, Y. In situ recrystallization of zero-dimensional hybrid metal halide glass-ceramics toward improved scintillation performance. Chem. Sci. 2023, 14, 12238–12245. [Google Scholar] [CrossRef] [PubMed]
- Needham, G.F.; Willett, R.D.; Franzen, H.F. Phase transitions in crystalline models of bilayers. 1. Differential scanning calorimetric and x-ray studies of (C12H25NH3)2MCl4 and (NH3C14H29NH3)2MCl4 salts (M = Mn2+, Cd2+, Cu2+). J. Phys. Chem. 1984, 88, 674–680. [Google Scholar] [CrossRef]
- Vacatello, M.; de Girolamo, M.; Busico, V. Relationships between structure and properties in long-chain bis(n-alkylammonium)tetrabromocuprates(II) and bis(n-alkylammonium)tetrabromomanganates(II). J. Chem. Soc. Faraday Trans. 1981, 77, 2367–2375. [Google Scholar] [CrossRef]
- Mitzi, D.B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M=Ge, Sn, Pb). Chem. Mater. 1996, 8, 791–800. [Google Scholar] [CrossRef]
- Zachariasen, W.H. The atomic arrangement in glass. J. Am. Chem. Soc. 2002, 54, 3841–3851. [Google Scholar] [CrossRef]
- Wang, T.; Xu, X.; Yao, S.; Yu, J.; Yang, Z.; Qiu, J.; Yang, Y.; Yu, X. Scintillator ink with low-temperature thermoplastic for micro X-ray imaging. Adv. Opt. Mater. 2023, 12, 2302203. [Google Scholar] [CrossRef]
- Singh, A.; Crace, E.; Xie, Y.; Mitzi, D.B. A two-dimensional lead-free hybrid perovskite semiconductor with reduced melting temperature. Chem. Commun. 2023, 59, 8302–8305. [Google Scholar] [CrossRef] [PubMed]
- Umeyama, D.; Lin, Y.; Karunadasa, H.I. Red-to-black piezochromism in a compressible Pb-I-SCN layered perovskite. Chem. Mater. 2016, 28, 3241–3244. [Google Scholar] [CrossRef]
- Jaffe, A.; Lin, Y.; Mao, W.L.; Karunadasa, H.I. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite. J. Am. Chem. Soc. 2015, 137, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Liu, B.; Yan, J.; Fang, Y.; Chen, M.; Chong, W.K.; Jiang, S.; Kuo, J.L.; Fang, J.; Liang, P.; et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes. J. Am. Chem. Soc. 2019, 141, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, T.; Wang, Y.; Yang, W.; Lü, X. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter Radiat. 2020, 5, 018201. [Google Scholar] [CrossRef]
- Lee, Y.; Mitzi, D.B.; Barnes, P.W.; Vogt, T. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. Phys. Rev. B 2003, 68, 020103. [Google Scholar] [CrossRef]
- Kong, L.; Liu, G.; Gong, J.; Hu, Q.; Schaller, R.D.; Dera, P.; Zhang, D.; Liu, Z.; Yang, W.; Zhu, K.; et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proc. Natl. Acad. Sci. USA 2016, 113, 8910–8915. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.; Lin, Y.; Karunadasa, H.I. Halide perovskites under pressure: Accessing new properties through lattice compression. ACS Energy Lett. 2017, 2, 1549–1555. [Google Scholar] [CrossRef]
- Chen, B.; Yu, R.; Xing, G.; Wang, Y.; Wang, W.; Chen, Y.; Xu, X.; Zhao, Q. Dielectric engineering of 2D organic-inorganic hybrid perovskites. ACS Energy Lett. 2023, 9, 226–242. [Google Scholar] [CrossRef]
- Smith, M.D.; Pedesseau, L.; Kepenekian, M.; Smith, I.C.; Katan, C.; Even, J.; Karunadasa, H.I. Decreasing the electronic confinement in layered perovskites through intercalation. Chem. Sci. 2017, 8, 1960–1968. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P.M.; et al. In situ synthesis of lead-free halide perovskite-COF nanocomposites as photocatalysts for photoinduced polymerization in both organic and aqueous phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, M.; Biesold, G.M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, e2005888. [Google Scholar] [CrossRef] [PubMed]
- Li, R.N.; Chen, F.; Lam, C.-H.; Tsui, O.K.C. Viscosity of PMMA on silica: Epitome of systems with strong polymer-substrate interactions. Macromolecules 2013, 46, 7889–7893. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, M.; Liu, Y.; Yu, X.; Pi, C.; Yang, Z.; Zhang, H.; Liu, Z.; Wang, T.; Qiu, J.; et al. All-inorganic perovskite polymer-ceramics for flexible and refreshable X-ray imaging. Adv. Funct. Mater. 2021, 32, 2107424. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, R.; Li, F.; Xie, H.; He, P.; Sha, Q.; Tang, Z.; Wang, N.; Zhong, H. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance. Adv. Funct. Mater. 2021, 31, 2010009. [Google Scholar] [CrossRef]
- De Roo, J.; Ibanez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J.C.; Van Driessche, I.; Kovalenko, M.V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, J.; Jones, N.L.; Harlow, R.L.; Herron, N.; Thorn, D.L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 2002, 113, 2328–2330. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.-D.; Fan, C.-C.; Fu, X.-B.; Jing, C.-Q.; Jin, M.-L.; You, Y.-M.; Zhang, W. Rational design of 2D metal halide perovskites with low congruent melting temperature and large melt-processable window. J. Am. Chem. Soc. 2024, 146, 9272–9284. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.D.; Fan, C.C.; Zhang, W. Reversible glass-crystal transition in a new type of 2D metal halide perovskites. Adv. Funct. Mater. 2024, 2407143. [Google Scholar] [CrossRef]
- Li, T.; Dunlap-Shohl, W.A.; Reinheimer, E.W.; Le Magueres, P.; Mitzi, D.B. Melting temperature suppression of layered hybrid lead halide perovskites via organic ammonium cation branching. Chem. Sci. 2019, 10, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Dunlap-Shohl, W.A.; Han, Q.; Mitzi, D.B. Melt processing of hybrid organic-inorganic lead iodide layered perovskites. Chem. Mater. 2017, 29, 6200–6204. [Google Scholar] [CrossRef]
- Li, T.Y.; Zeidell, A.M.; Findik, G.; Dunlap-Shohl, W.A.; Euvrard, J.; Gundogdu, K.; Jurchescu, O.D.; Mitzi, D.B. Phase-pure hybrid layered lead iodide perovskite films based on a two-step melt-processing approach. Chem. Mater. 2019, 31, 4267–4274. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Medeiros, D.R.; DeHaven, P.W. Low-temperature melt processing of organic-inorganic hybrid films. Chem. Mater. 2002, 14, 2839–2841. [Google Scholar] [CrossRef]
- Adjokatse, S.; Fang, H.H.; Duim, H.; Loi, M.A. Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale 2019, 11, 5989–5997. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Schlichtmann, R.L.; Milot, M.I.; Slobidsky, J.; Wilsey, M.; Verburg, A.; Chen, Y.; Hamdeh, U.H.; Ryan, B.J.; Boote, B.; et al. Melt-processed halide perovskite thin films from a two-dimensional ruddlesden-popper phase precursor. J. Phys. Chem. Lett. 2023, 14, 5194–5202. [Google Scholar] [CrossRef]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef]
- Guan, N.; Wu, G.; Wang, J.; Bao, Y.; Hui, W.; Deng, Z.; Gu, L.; Gao, X.; Zhang, J.; Muller-Buschbaum, P.; et al. Improved power conversion efficiency and stability of perovskite solar cells induced by molecular interaction with poly(ionic liquid) additives. ACS Appl. Mater. Inter. 2023, 15, 26872–26881. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Dong, J.; Dai, Y.; Wang, P.; Shi, B.; Zhao, Y.; Zhang, X. Indium iodide additive realizing efficient mixed Sn-Pb perovskite solar cells. Adv. Energy Mater. 2024, 14, 2304234. [Google Scholar] [CrossRef]
- Fabini, D. Quantifying the potential for lead pollution from halide perovskite photovoltaics. J. Phys. Chem. Lett. 2015, 6, 3546–3548. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, Y. Recent progress in all-inorganic tin-based perovskite solar cells: A review. Sci. China Chem. 2024, 67, 1117–1136. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Dimitrakopoulos, C.D.; Rosner, J.; Medeiros, D.R.; Xu, Z.; Noyan, C. Hybrid field-effect transistor based on a low-temperature melt-processed channel layer. Adv. Mater. 2002, 14, 1772–1776. [Google Scholar] [CrossRef]
- Fang, H.; Jena, P. Super-ion inspired colorful hybrid perovskite solar cells. J. Mater. Chem. A 2016, 4, 4728–4737. [Google Scholar] [CrossRef]
- Dimitrakopoulos, C.D.; Malenfant, P.R.L. Organic thin film transistors for large area electronics. Adv. Mater. 2002, 14, 99–117. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Dimitrakopoulos, C.D.; Kosbar, L.L. Structurally tailored organic-inorganic perovskites: Optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 2001, 13, 3728–3740. [Google Scholar] [CrossRef]
- Qin, Y.; She, P.; Huang, X.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331. [Google Scholar] [CrossRef]
- Shaw, B.K.; Hughes, A.R.; Ducamp, M.; Moss, S.; Debnath, A.; Sapnik, A.F.; Thorne, M.F.; McHugh, L.N.; Pugliese, A.; Keeble, D.S.; et al. Melting of hybrid organic-inorganic perovskites. Nat. Chem. 2021, 13, 778–785. [Google Scholar] [CrossRef]
- Li, H.; Lei, Y.; Peng, G.; Wang, Q.; Li, Z.; Wang, H.; Wang, G.; Jin, Z. Low-temperature melt processing monolithic integration of organic manganese (II) bromide wafers with pixelated substrate for high sensitivity X-ray imaging. Adv. Funct. Mater. 2022, 32, 2208199. [Google Scholar] [CrossRef]
- Li, B.; Xu, Y.; Zhang, X.; Han, K.; Jin, J.; Xia, Z. Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators. Adv. Opt. Mater. 2022, 10, 2102793. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, H.; Liu, W.; Zhan, K.; Liu, H.; Tang, Z.; Yang, C. High-efficiency narrow-band green-emitting manganese(II) halide for multifunctional applications. ACS Appl. Mater. Inter. 2023, 15, 47238–47249. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Z.; Peng, G.; Qiu, F.; Li, Z.; Lei, Y.; Deng, Y.; Wang, H.; Liu, Z.; Jin, Z. Organic cation design of manganese halide hybrids glass toward low-temperature integrated efficient, scaling, and reproducible X-ray detector. Adv. Opt. Mater. 2023, 11, 2300216. [Google Scholar] [CrossRef]
- Shaw, B.K.; Castillo-Blas, C.; Thorne, M.F.; Ríos Gómez, M.L.; Forrest, T.; Lopez, M.D.; Chater, P.A.; McHugh, L.N.; Keen, D.A.; Bennett, T.D. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures. Chem. Sci. 2022, 13, 2033–2042. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, C.; Nie, J.; Guo, Y.; Wang, X.; Zhang, B.; Ouyang, X. Highly sensitive and stable X-ray detector based on a 0D structural Cs4PbI6 single crystal. J. Phys. Chem. Lett. 2021, 12, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Ma, W.; Zhang, H.; Tian, Y.; Lin, G.; Xiao, W.; Yu, X.; Qiu, J.; Xu, X.; Yang, Y.; et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 2021, 31, 2009973. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Z.; Huang, J.; Molokeev, M.S.; Xiao, Z.; Ma, C.; Xia, Z. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: A case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 2020, 11, 5956–5962. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, F.; Yao, H.; Ci, Z.; Yang, Z.; Jin, Z. Halide perovskites for high-performance X-ray detector. Mater. Today 2021, 48, 155–175. [Google Scholar] [CrossRef]
- Crace, E.J.; Singh, A.; Haley, S.; Claes, B.; Mitzi, D.B. Meltable hybrid antimony and bismuth iodide one-dimensional perovskites. Inorg. Chem. 2023, 62, 16161–16169. [Google Scholar] [CrossRef]
- Li, B.; Jin, J.; Yin, M.; Zhang, X.; Molokeev, M.S.; Xia, Z.; Xu, Y. Sequential and reversible phase transformations in zero-dimensional organic-inorganic hybrid Sb-based halides towards multiple emissions. Angew. Chem. Int. Ed. 2022, 61, e202212741. [Google Scholar] [CrossRef]
- Xu, Z.; Li, N.; Yan, X.; Wang, X.; He, T.; Yang, Z.; Liu, S. Transparent 0D antimony halides glassy wafer with near-unity photoluminescence quantum yield for high spatial resolution X-ray imaging. Adv. Opt. Mater. 2024, 12, 2301477. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhao, Y.; Jia, H.; Yang, Z.; Yin, B.; Wu, Y.; Yi, Y.; Zhang, C.; Yao, J. Crystal-liquid-glass transition and near-unity photoluminescence quantum yield in low melting point hybrid metal halides. J. Am. Chem. Soc. 2023, 145, 12360–12369. [Google Scholar] [CrossRef]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, B.; Ren, X.; Wang, F. Recent advances in all-inorganic zero-dimensional metal halides. Chempluschem 2021, 86, 1577–1585. [Google Scholar] [CrossRef]
- Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S.; Rogach, A.L.; Xing, G.; Shi, P.; Wang, F. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606. [Google Scholar] [CrossRef]
- Raston, C.L.; White, A.H. Crystal structure of the copper(I) iodide–pyridine (1/1) tetramer. J. Chem. Soc. Dalton Trans. 1976, 2153–2156. [Google Scholar] [CrossRef]
- Dong, C.; Song, X.; Hasanov, B.E.; Yuan, Y.; Gutierrez-Arzaluz, L.; Yuan, P.; Nematulloev, S.; Bayindir, M.; Mohammed, O.F.; Bakr, O.M. Organic-inorganic hybrid glasses of atomically precise nanoclusters. J. Am. Chem. Soc. 2024, 146, 7373–7385. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Zhang, J.; Xia, G.; Liu, Y.; Zheng, Y.; Zhang, W.; Tang, Y.; Pang, W.K.; Guo, Z. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, M.; Song, L.; Zhang, M. Research advances in amorphous-crystalline heterostructures toward efficient electrochemical applications. Small 2023, 19, e2206081. [Google Scholar] [CrossRef]
- Nunzi, J.M.; Lebel, O. Revisiting the optimal nano-morphology: Towards amorphous organic photovoltaics. Chem. Rec. 2019, 19, 1028–1038. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Yu, T.; Peng, G.; Lei, Y.; Chen, H.; Wu, Y.; Wang, H.; Jin, Z. Crystalline-amorphous heterojunction for a metal halides single crystals X-ray detector with substantially increased sensitivity. Laser Photonics Rev. 2023, 18, 2300654. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Z.; Ma, C.; Li, H.; Liu, Y.; Gao, L.; Zhang, J.; You, J.; Liu, S. First-principles calculation design for 2D perovskite to suppress ion migration for high-performance X-ray detection. Adv. Funct. Mater. 2021, 32, 2110392. [Google Scholar] [CrossRef]
- Hariyani, S.; Sójka, M.; Setlur, A.; Brgoch, J. A guide to comprehensive phosphor discovery for solid-state lighting. Nat. Rev. Mater. 2023, 8, 759–775. [Google Scholar] [CrossRef]
- Xie, R.-J.; Hirosaki, N.; Li, Y.; Takeda, T. Rare-earth activated nitride phosphors: Synthesis, luminescence and applications. Materials 2010, 3, 3777–3793. [Google Scholar] [CrossRef]
- Chen, B.; Li, D.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, e2002454. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zheng, W.; Chun, F.; Xu, X.; Zhao, Q.; Wang, F. Synthesis and hybridization of CuInS2 nanocrystals for emerging applications. Chem. Soc. Rev. 2023, 52, 8374–8409. [Google Scholar] [CrossRef]
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Liu, D.; Dang, P.; Zhang, G.; Lian, H.; Li, G.; Lin, J. Near-infrared emitting metal halide materials: Luminescence design and applications. InfoMat 2024, 6, e12542. [Google Scholar] [CrossRef]
- Li, M.; Yang, Y.; Kuang, Z.; Hao, C.; Wang, S.; Lu, F.; Liu, Z.; Liu, J.; Zeng, L.; Cai, Y.; et al. Acceleration of radiative recombination for efficient perovskite LEDs. Nature 2024, 630, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Song, X.; Wu, Y.; Lian, Y.; Li, Y.; Xu, Q.; Zhou, Y.; Wang, Z.; Wang, L.; Luo, J.; et al. A highly optical anisotropic hybrid perovskite for efficient manipulation of light polarization. Adv. Funct. Mater. 2024, 2403843. [Google Scholar] [CrossRef]
- Chen, J.C.; Lu, Y.D.; Chen, J.Y. Generation of long-lived excitons in room-temperature phosphorescence 2D organic and inorganic hybrid perovskites for ultrafast and low power-consumption nonvolatile photomemory. Adv. Sci. 2023, 10, e2301028. [Google Scholar] [CrossRef] [PubMed]
- Gautier, R.; Paris, M.; Massuyeau, F. Exciton self-trapping in hybrid lead halides: Role of halogen. J. Am. Chem. Soc. 2019, 141, 12619–12623. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, C.; Li, B.; Lin, C.; Li, Y.; Wang, L.; Xie, R.-J. Large-scale room-temperature synthesis of high-efficiency lead-free perovskite derivative (NH4)2SnCl6:Te phosphor for warm wLEDs. Chem. Eng. J. 2021, 420, 129740. [Google Scholar] [CrossRef]
- Liu, P.; She, C.; Tan, L.; Xu, P.; Yan, L. Development of LED package heat dissipation research. Micromachines 2022, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yu, Z.; Wang, Q.; Peng, Y.; Chen, M. Highly heat-dissipating phosphor-in-glass film converter for high-luminance laser lighting. Ceram. Int. 2024, 50, 10609–10617. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Liu, W.; Wang, X.; Li, Y.; Zhou, X.; Fang, Z.; Ning, L. Broadband near-infrared luminescence from Mo4+ in zero-dimensional perovskite Cs2Zr(Cl,Br)6 with an exceptionally high quantum efficiency and thermal stability. Chem. Mater. 2024, 36, 901–910. [Google Scholar] [CrossRef]
- He, M.; Jia, J.; Zhao, J.; Qiao, X.; Du, J.; Fan, X. Glass-ceramic phosphors for solid state lighting: A review. Ceram. Int. 2021, 47, 2963–2980. [Google Scholar] [CrossRef]
- Hamidnia, M.; Luo, Y.; Wang, X.D. Application of micro/nano technology for thermal management of high power LED packaging–A review. Appl. Therm. Eng. 2018, 145, 637–651. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, X.; Chen, J.; Jiang, P. Epoxy thermoset resins with high pristine thermal conductivity. High Volt. 2017, 2, 139–146. [Google Scholar] [CrossRef]
- Tuersun, Y.; Lin, W.; Huang, X.; Qiu, W.; Luo, P.; Huang, M.; Chu, S. Fabrication and pilot-production of ultrahigh thermal conductivity vertical graphite-silicone pads with very low cost. Carbon 2022, 194, 72–80. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.; Wen, Z.; Sun, H.; Ji, S.; Meng, X.; Zhang, R.; Jiang, J.; Tang, Z.; Liu, F. Excitation wavelength-dependent fluorescence of a lanthanide organic metal halide cluster for anti-counterfeiting applications. Angew. Chem. Int. Ed. 2023, 62, e202316336. [Google Scholar] [CrossRef] [PubMed]
- Yakunin, S.; Chaaban, J.; Benin, B.M.; Cherniukh, I.; Bernasconi, C.; Landuyt, A.; Shynkarenko, Y.; Bolat, S.; Hofer, C.; Romanyuk, Y.E.; et al. Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nat. Commun. 2021, 12, 981. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.L.; Lv, Q.; Tao, Y.C.; Ma, Y.X.; Wang, X.D. Design and growth of branched organic crystals: Recent advances and future applications. Angew. Chem. Int. Ed. 2022, 61, e202208768. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Ma, H.; Shi, H.; Wang, H.; Lv, A.; Bian, L.; Zhang, M.; Ma, C.; Ling, K.; Gu, M.; et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 2021, 20, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Gan, N.; Zou, X.; Zhang, Y.; Gu, L.; An, Z. Recent advances in multicolor organic room-temperature phosphorescence. Appl. Phys. Rev. 2023, 10, 021313. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, H.; Li, P.; Bai, Y.; Yin, B.; Ouyang, M.; Zheng, N.; Liu, X.; Zhao, Z.; Qiu, J.; et al. Spectral and temporal manipulation of ultralong phosphorescence based on melt-quenched glassy metal–organic complexes for multi-mode photonic functions. Adv. Funct. Mater. 2024, 34, 2312491. [Google Scholar] [CrossRef]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef]
- Lencer, D.; Salinga, M.; Wuttig, M. Design rules for phase-change materials in data storage applications. Adv. Mater. 2011, 23, 2030–2058. [Google Scholar] [CrossRef] [PubMed]
- Longley, L.; Calahoo, C.; Limbach, R.; Xia, Y.; Tuffnell, J.M.; Sapnik, A.F.; Thorne, M.F.; Keeble, D.S.; Keen, D.A.; Wondraczek, L.; et al. Metal-organic framework and inorganic glass composites. Nat. Commun. 2020, 11, 5800. [Google Scholar] [CrossRef]
- Xu, X.; Cao, J.; Peng, D.; Chen, B. A tailor-made double-tapered fibre array enables the state-of-the-art scintillators. Sci. Bull. 2023, 68, 1342–1345. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, W.; Deng, Y.; Jiang, T.; Yu, A.; Chen, H.; Liu, S.; Zhao, Q. Lead-free organic–inorganic hybrid scintillators for X-ray detection. Aggregate 2024, 5, e454. [Google Scholar] [CrossRef]
- He, X.; Deng, Y.; Ouyang, D.; Zhang, N.; Wang, J.; Murthy, A.A.; Spanopoulos, I.; Islam, S.M.; Tu, Q.; Xing, G.; et al. Recent development of halide perovskite materials and devices for ionizing radiation detection. Chem. Rev. 2023, 123, 1207–1261. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, Y.; Xu, Q.; Wei, H.; Fang, Y.; Wang, Q.; Deng, Y.; Li, T.; Gruverman, A.; Cao, L.; et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 2017, 11, 315–321. [Google Scholar] [CrossRef]
- Han, K.; Sakhatskyi, K.; Jin, J.; Zhang, Q.; Kovalenko, M.V.; Xia, Z. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators. Adv. Mater. 2022, 34, 2110420. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, Y.; Chen, Z.; Wang, M.; Ma, Z.; Chen, X.; Jia, M.; Wu, D.; Xiao, J.; Li, X.; et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater. 2022, 34, e2204801. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.K.; Yoo, S.; Choi, J.; Kim, H.K.; Kang, Y. Flexible wood-based X-ray scintillator film using lead-free Cs3Cu2I5 perovskite nanoparticles. Small Struct. 2024, 5, 2400043. [Google Scholar] [CrossRef]
- Wang, B.; Peng, J.; Yang, X.; Cai, W.; Xiao, H.; Zhao, S.; Lin, Q.; Zang, Z. Template assembled large-size CsPbBr3 nanocomposite films toward flexible, stable, and high-performance X-ray scintillators. Laser Photonics Rev. 2022, 16, 2100736. [Google Scholar] [CrossRef]
- Li, K.; Zhang, W.; Niu, L.; Ye, Y.; Ren, J.; Liu, C. Lead-free cesium manganese halide nanocrystals embedded glasses for X-ray imaging. Adv. Sci. 2023, 10, e2204843. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Li, C.; Yang, W.; Wang, C.; Chen, Y.; Zeng, H. Are inorganic lead halide perovskite nanocrystals promising scintillators? ACS Energy Lett. 2023, 8, 2996–3004. [Google Scholar] [CrossRef]
- Cho, S.; Kim, S.; Kim, J.; Jo, Y.; Ryu, I.; Hong, S.; Lee, J.J.; Cha, S.; Nam, E.B.; Lee, S.U.; et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light Sci. Appl. 2020, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-X.; Wang, X.; Yin, J.; Gutiérrez-Arzaluz, L.; He, T.; Chen, C.; Han, Y.; Zhang, Y.; Bakr, O.M.; Eddaoudi, M.; et al. Perovskite-nanosheet sensitizer for highly efficient organic X-ray imaging scintillator. ACS Energy Lett. 2021, 7, 10–16. [Google Scholar] [CrossRef]
- He, Z.L.; Wei, J.H.; Luo, J.B.; Zhang, Z.Z.; Chen, J.H.; Guo, X.X.; Kuang, D.B. Guanidinium-based manganese(II) bromide with high glass-forming ability for thermoplastic curved X-ray imaging. Laser Photonics Rev. 2024, 18, 2301249. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Liu, Y.; Zhang, Y. Shape-on-demand synthesis of luminescent (ETP)2MnBr4 glass scintillator. Chem. Eng. J. 2024, 483, 149239. [Google Scholar] [CrossRef]
- Shao, W.; He, T.; Wang, J.-X.; Zhou, Y.; Yuan, P.; Wu, W.; Zhang, Z.; Bakr, O.M.; Liang, H.; Mohammed, O.F. Transparent organic and metal halide tandem scintillators for high-resolution dual-energy X-ray imaging. ACS Energy Lett. 2023, 8, 2505–2512. [Google Scholar] [CrossRef]
- Cai, S.; Ju, Y.; Wang, Y.; Li, X.; Guo, T.; Zhong, H.; Huang, L. Fast-response oxygen optical fiber sensor based on PEA2SnI4 perovskite with extremely low limit of detection. Adv. Sci. 2022, 9, e2104708. [Google Scholar] [CrossRef]
- Li, S.S.; Cheng, P.; Liu, H.; Li, J.; Wang, S.; Xiao, C.; Liu, J.; Chen, J.; Wu, K. Polymeric metal halides with bright luminescence and versatile processability. Angew. Chem. Int. Ed. 2024, 63, e202319969. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xiao, G.; Yan, D. Boosting wide-range tunable long-afterglow in 1D metal-organic halide micro/nanocrystals for space/time-resolved information photonics. Adv. Sci. 2021, 33, e2007571. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Qi, Z.; Dai, M.; Xing, C.; Yan, D. Ultralow-loss optical waveguides through balancing deep-blue TADF and orange room temperature phosphorescence in hybrid antimony halide microstructures. Angew. Chem. Int. Ed. 2023, 62, e202309913. [Google Scholar] [CrossRef]
- Zhou, B.; Qi, Z.; Yan, D. Highly efficient and direct ultralong all-phosphorescence from metal-organic framework photonic glasses. Angew. Chem. Int. Ed. 2022, 61, e202208735. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, S.; Zhang, Y.; Lv, H.; Ge, D.; Gu, Y.; Jiang, M. Cesium lead bromide perovskite nanocrystals for the visual detection of chloride ions: A review. J. Solid State Chem. 2024, 329, 124418. [Google Scholar] [CrossRef]
- Maulida, P.Y.D.; Subagyo, R.; Hartati, S.; Jovita, S.; Zulfa, L.L.; Hakim, H.; Birowosuto, M.D.; Kusumawati, Y.; Arramel. Recent progress and rational design of perovskite-based chemosensors: A review. J. Alloys Compd. 2023, 962, 170996. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W.; Thirumalaivasan, N.; Bhushan, M.; Murugan, A. Sensing utilities of cesium lead halide perovskites and composites: A comprehensive review. Sensors 2024, 24, 2504. [Google Scholar] [CrossRef] [PubMed]
- George, K.J.; Halali, V.V.; Sanjayan, C.G.; Suvina, V.; Sakar, M.; Balakrishna, R.G. Perovskite nanomaterials as optical and electrochemical sensors. Inorg. Chem. Front. 2020, 7, 2702–2725. [Google Scholar] [CrossRef]
- Boubezari, I.; Zazoua, A.; Errachid, A.; Jaffrezic-Renault, N. Sensitive electrochemical detection of bioactive molecules (hydrogen peroxide, glucose, dopamine) with perovskites-based sensors. Chemosensors 2021, 9, 289. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, T.; Li, F.; Bao, C.; Gao, H.; Yi, Y.; Yang, J.; Fu, G.; Zhou, X.; Zou, Z. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells. Nanoscale 2015, 7, 5427–5434. [Google Scholar] [CrossRef]
- Cheng, S.; Zhong, H. What happens when halide perovskites meet with water? J. Phys. Chem. Lett. 2022, 13, 2281–2290. [Google Scholar] [CrossRef]
- Il Jake Choi, J.; Ono, L.K.; Cho, H.; Kim, K.J.; Kang, H.B.; Qi, Y.; Park, J.Y. Pathways of water-induced lead-halide perovskite surface degradation: Insights from In situ atomic-scale analysis. ACS Nano 2023, 17, 25679–25688. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Chen, B.; Zheng, W.; Wang, F. Ultrafast and multicolor luminescence switching in a lanthanide-based hydrochromic perovskite. J. Am. Chem. Soc. 2022, 144, 22295–22301. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Chen, B.; Zheng, W.; Zhang, X.; Wei, X.; Cao, Y.; Suo, H.; Wang, F. Kinetics-tunable hydrochromic luminescence switching in Rb3TbF6:Eu3+ perovskite. Adv. Opt. Mater. 2024, 12, 2400147. [Google Scholar] [CrossRef]
- Zhou, L.; Liao, J.F.; Huang, Z.G.; Wei, J.H.; Wang, X.D.; Li, W.G.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection. Angew. Chem. Int. Ed. 2019, 58, 5277–5281. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.; Gao, Z.; Du, J. Lead-free antimony-based perovskite nanocrystals as a fluorescent nanoprobe for the turn-on detection of trace water in organic solvents. ACS Appl. Nano Mater. 2024, 7, 7958–7965. [Google Scholar] [CrossRef]
Materials | Organic Cations | Tx or Tg (°C) | Tm (°C) | Td (°C) | Ref. |
---|---|---|---|---|---|
(C4)2PbCl4 | 4-ammoniumbutyric acid | - | 144.64 | - | [17] |
(C5)2PbCl4 | 5-aminovaleric acid | - | 184.79 | - | [17] |
(C5)2PbBr4 | 5-aminovaleric acid | - | 157.35 | - | [17] |
(C6)2PbCl4 | 6-aminocaproic acid | - | 207.99 | - | [17] |
(C6)2PbBr4 | 6-aminocaproic acid | - | 211.39 | - | [17] |
Rac-NPB | racemic 1-(1-naphthyl)ethylammonium | - | 221 | 215 | [22] |
S-NPB | S-(−)-1-(1-naphthyl)ethylammonium | 67 a | 173 | 205 | [23] |
(4-F-PEA)2PbI4 | 4-fluorophenethylammonium | 244.3 | 258.9 | - | [58] |
(β-Me-PEA)2PbI4 | β-methylphenethylammonium | 170.7 | 207.0 | - | [58] |
(1-MeHa)2PbI4 | 1-methyl-hexylammonium | 111.1 | 172.3 | 228 | [63] |
(2-F-PEA)2PbI4 | 2-fluorophenethylammonium | 181.2 | 245.8 | - | [64] |
(4-MeO-PEA)2PbI4 | 4-methoxyphenethylammonium | 214.2 | 247.1 | - | [64] |
(PEA)2PbI4 | phenethylammonium | 199.2 | 252.9 | - | [64] |
(3-F-PEA)2PbI4 | 3-fluorophen-ethylammonium | 211.6 | 261.4 | - | [64] |
(DMIEA)3Pb2I7 | N,N-dimethyl iodoethylammonium | - | 173 | 235 | [62] |
(DMIPA)4Pb3I10 | N,N-dimethyl iodopropylammonium | - | 151 | 245 | [62] |
(DMBPA)4Pb3Br10 | N,N-dimethyl bromopropylammonium | - | 139 | 239 | [62] |
Materials | Organic Cations | Tg (°C) | Tm (°C) | Ref. |
---|---|---|---|---|
(HTPP)2MnBr4 | hexyltriphenylphosphonium | 38.6 | 169 | [15] |
(BuTP)2MnBr4 | butyltriphenylphosphonium | 46 | ~135 | [35] |
(1-EP)2MnBr4 | 1-ethylpyridine | - | ~105 | [35] |
(1-BuP)2MnBr4 | 1-butylpyridine | - | ~110 | [35] |
(BTP)2MnBr4 | benzyltriphenylphosphonium | 74 | ~220 | [35] |
(ETP)2MnCl4 | ethyltriphenylphosphonium | - | 204 | [35] |
(Bmmim)2MnCl4 | 1-butyl-2,3-dimethylimidazolium | - | 50 | [40] |
(Bmmim)2MnBr4 | 1-butyl-2,3-dimethylimidazolium | - | 60 | [40] |
(TPrA)[Mn(dca)3] | tetrapropylammonium | 218 | 271 | [79] |
(BTA)2MnBr4 | benzyltrimethylammonium | 175 | [80] | |
(ETP)2MnBr4 | ethyltriphenylphosphonium | 50 | 168 | [81] |
(BPTP)2MnBr4 | 3-bromopropyl)triphenylphosphonium | - | 220 | [82] |
(HTP)2MnBr4 | heptyl(triphenyl) phosphonium | - | 165 | [83] |
(TP)2MnBr4 | (triphenyl)phosphine | - | <220 | [83] |
(MTP)2MnBr4 | methyl(triphenyl)phosphonium | 55 | <220 | [83] |
(PTP)2MnBr4 | pentyl(triphenyl)phosphonium | - | <220 | [83] |
(TBuA)[Mn(dca)3] | tetrabutylammonium | 33 | 185 | [84] |
(TPnA)[Mn(dca)3] | tetrapentylammonium | 9 | 149 | [84] |
Materials | Organic Cations | Tg (°C) | Tm (°C) | Td (°C) | Ref. |
---|---|---|---|---|---|
(S-2-HMM)3SbCl6 | S-2-(hydroxymethyl)morpholine | 22 | 140 | 249 | [24] |
(Rac-2-HMM)2SbCl5 | rac-2-(hydroxymethyl)morpholine | 25 | 130 | - | [24] |
(Bmmim)2SbCl5 | 1-butyl-2,3-dimethylimidazolium | - | 140 | - | [40] |
(TMPZ)SbI5 | 1,1,4,4 tetramethylpiperazinium | - | 259 | - | [89] |
(S-MeTMPZ)SbI5 | (S)-1,1,2,4,4-pentamethylpiperazinium | - | 252 | - | [89] |
(MTP)2SbBr5 | methyltriphenylphosphonium | 65 | 178 | - | [90] |
(ETP)2SbCl5 | ethyltriphenylphosphine | 38 | 149 | - | [91] |
[Al(DMSO)6](SbCl6) | dimethyl sulfoxide | - | - | 175 | [92] |
[Ga(DMSO)6](SbCl6) | dimethyl sulfoxide | ~0 | 90 | - | [92] |
[Y(DMSO)6](SbCl6) | dimethyl sulfoxide | - | <100 | - | [92] |
[Zr(DMSO)6](SbCl6) | dimethyl sulfoxide | - | <100 | - | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Xing, G.; Xu, X.; Chen, B. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. Sensors 2024, 24, 5258. https://doi.org/10.3390/s24165258
Tang W, Xing G, Xu X, Chen B. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. Sensors. 2024; 24(16):5258. https://doi.org/10.3390/s24165258
Chicago/Turabian StyleTang, Wei, Guansheng Xing, Xiuwen Xu, and Bing Chen. 2024. "Emerging Hybrid Metal Halide Glasses for Sensing and Displays" Sensors 24, no. 16: 5258. https://doi.org/10.3390/s24165258
APA StyleTang, W., Xing, G., Xu, X., & Chen, B. (2024). Emerging Hybrid Metal Halide Glasses for Sensing and Displays. Sensors, 24(16), 5258. https://doi.org/10.3390/s24165258