Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raman Spectrometer Components
2.2. Micro-Raman Spectrometer Prototype Assembly
2.3. Materials
2.4. Quantitave Analysis
3. Results
3.1. Raman Spectra
3.2. Spectral Resolution
3.3. Statistical Analysis
3.4. Signal-to-Noise Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Hassing, S. What Is Vibrational Raman Spectroscopy: A Vibrational or an Electronic Spectroscopic Technique or Both? In Modern Spectroscopic Techniques and Applications; Khan, M., Morari Do Nascimento, G., El-Azazy, M., Eds.; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-78985-205-9. [Google Scholar]
- Day, J.S.; Edwards, H.G.M.; Dobrowski, S.A.; Voice, A.M. The Detection of Drugs of Abuse in Fingerprints Using Raman Spectroscopy I: Latent Fingerprints. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Lipovka, A.; Fatkullin, M.; Averkiev, A.; Pavlova, M.; Adiraju, A.; Weheabby, S.; Al-Hamry, A.; Kanoun, O.; Pašti, I.; Lazarevic-Pasti, T.; et al. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit. Rev. Anal. Chem. 2024, 54, 110–134. [Google Scholar] [CrossRef] [PubMed]
- Cançado, L.G.; Monken, V.P.; Campos, J.L.E.; Santos, J.C.C.; Backes, C.; Chacham, H.; Neves, B.R.A.; Jorio, A. Science and Metrology of Defects in Graphene Using Raman Spectroscopy. Carbon 2024, 220, 118801. [Google Scholar] [CrossRef]
- Hassan, A.H.A.; Zeinhom, M.M.A.; Shaban, M.; Korany, A.M.; Gamal, A.; Abdel-Atty, N.S.; Al-Saeedi, S.I. Rapid and Sensitive in Situ Detection of Heavy Metals in Fish Using Enhanced Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 313, 124082. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Hu, X.; Yu, J.; Li, P.; Liu, A.; Luo, S.; Shi, Z.; Wang, Z. Raman Spectroscopy and Quantum Chemical Calculation on SmCl3-KCl-LiCl Molten Salt System. J. Mol. Liq. 2024, 394, 123693. [Google Scholar] [CrossRef]
- Kovalev, V.N.; Spivak, A.V.; Setkova, T.V.; Ksenofontov, D.A.; Volkova, E.A.; Korepanov, V.I.; Balitsky, V.S.; Zakharchenko, E.S. High-Pressure Raman Spectroscopy Study of α-Quartz-like Si1−xGexO2 Solid Solution. J. Phys. Chem. Solids 2024, 185, 111749. [Google Scholar] [CrossRef]
- Kauffmann, T.H.; Kokanyan, N.; Fontana, M.D. Use of Stokes and anti-Stokes Raman Scattering for New Applications. J. Raman Spectrosc. 2019, 50, 418–424. [Google Scholar] [CrossRef]
- Kasperczyk, M.; Jorio, A.; Neu, E.; Maletinsky, P.; Novotny, L. Stokes–Anti-Stokes Correlations in Diamond. Opt. Lett. 2015, 40, 2393. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Sandoval, S. Micro-Raman Spectroscopy: A Powerful Technique for Materials Research. Microelectron. J. 2000, 31, 419–427. [Google Scholar] [CrossRef]
- Fini, G. Applications of Raman Spectroscopy to Pharmacy. J. Raman Spectrosc. 2004, 35, 335–337. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Rousaki, A. Developing Macro-Raman Mapping as a Tool for Studying the Pigment Distribution of Art Objects. Anal. Chem. 2021, 93, 15390–15400. [Google Scholar] [CrossRef] [PubMed]
- Paiva, E.M.; Da Silva, V.H.; Poppi, R.J.; Pereira, C.F.; Rohwedder, J.J.R. Comparison of Macro and Micro Raman Measurement for Reliable Quantitative Analysis of Pharmaceutical Polymorphs. J. Pharm. Biomed. Anal. 2018, 157, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Di Mascolo, D.; Coclite, A.; Gentile, F.; Francardi, M. Quantitative Micro-Raman Analysis of Micro-Particles in Drug Delivery. Nanoscale Adv. 2019, 1, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Li, J.; He, H. Photo-Catalytic Degradation of Volatile Organic Compounds (VOCs) over Titanium Dioxide Thin Film. In Advanced Aspects of Spectroscopy; Akhyar Farrukh, M., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0715-6. [Google Scholar]
- Angoni, K. A Study of Highly Ordered Carbons by Use of Macroscopic and Microscopic Raman Spectroscopy. J. Mater. Sci. 1998, 33, 3693–3698. [Google Scholar] [CrossRef]
- Dieing, T.; Hollricher, O.; Toporski, J. (Eds.) Confocal Raman Microscopy; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2011; Volume 158, ISBN 978-3-642-12521-8. [Google Scholar]
- Giridhar, G.; Manepalli, R.R.K.N.; Apparao, G. Confocal Raman Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 141–161. ISBN 978-0-323-46140-5. [Google Scholar]
- Diaz Barrero, D.; Zeller, G.; Schlösser, M.; Bornschein, B.; Telle, H.H. Versatile Confocal Raman Imaging Microscope Built from Off-the-Shelf Opto-Mechanical Components. Sensors 2022, 22, 10013. [Google Scholar] [CrossRef]
- Day, J.C.C.; Bennett, R.; Smith, B.; Kendall, C.; Hutchings, J.; Meaden, G.M.; Born, C.; Yu, S.; Stone, N. A Miniature Confocal Raman Probe for Endoscopic Use. Phys. Med. Biol. 2009, 54, 7077–7087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tekle, H.; O’Malley, R.J.; Smith, J.D.; Gerald, R.E.; Huang, J. In Situ High-Temperature Raman Spectroscopy via a Remote Fiber-Optic Raman Probe. IEEE Trans. Instrum. Meas. 2023, 72, 1–8. [Google Scholar] [CrossRef]
- Latka, I.; Dochow, S.; Krafft, C.; Dietzek, B.; Popp, J. Fiber Optic Probes for Linear and Nonlinear Raman Applications—Current Trends and Future Development. Laser Photonics Rev. 2013, 7, 698–731. [Google Scholar] [CrossRef]
- Utzinger, U.; Richards-Kortum, R.R. Fiber Optic Probes for Biomedical Optical Spectroscopy. J. Biomed. Opt. 2003, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Luo, Z.; Liu, Q.; Yang, D.; Dong, H.; Huang, S.; Kong, A.; Wu, L. High-Sensitivity Raman Gas Probe for In Situ Multi-Component Gas Detection. Sensors 2021, 21, 3539. [Google Scholar] [CrossRef] [PubMed]
- Stevens, O.; Petterson, I.E.I.; Day, J.C.C.; Stone, N. Developing Fibre Optic Raman Probes for Applications in Clinical Spectroscopy. Chem. Soc. Rev. 2016, 45, 1919–1934. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.; Mayerhöfer, T. Micro-Raman Spectroscopy: Theory and Application; De Gruyter: Berlin, Germany, 2020; ISBN 978-3-11-051479-7. [Google Scholar]
- Pavić, I.; Šoda, J.; Gašparić, V.; Ivanda, M. Raman and Photoluminescence Spectroscopy with a Variable Spectral Resolution. Sensors 2021, 21, 7951. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, D.; Nagpal, A.; Rentzepis, P.M. Cell-Phone Camera Raman Spectrometer. Rev. Sci. Instrum. 2021, 92, 054101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Mayanovic, R.A. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research. Appl. Spectrosc. 2017, 71, 2325–2338. [Google Scholar] [CrossRef] [PubMed]
- Gualerzi, A.; Kooijmans, S.A.A.; Niada, S.; Picciolini, S.; Brini, A.T.; Camussi, G.; Bedoni, M. Raman Spectroscopy as a Quick Tool to Assess Purity of Extracellular Vesicle Preparations and Predict Their Functionality. J. Extracell. Vesicles 2019, 8, 1568780. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Raman Spectroscopic Assessment of Degree of Conversion of Bulk-Fill Resin Composites—Changes at 24 Hours Post Cure. Oper. Dent. 2015, 40, E92–E101. [Google Scholar] [CrossRef] [PubMed]
- Firmani, P.; Vitale, R.; Ruckebusch, C.; Marini, F. ANOVA-Simultaneous Component Analysis Modelling of Low-Level-Fused Spectroscopic Data: A Food Chemistry Case-Study. Anal. Chim. Acta 2020, 1125, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Člupek, M.; Matějka, P.; Volka, K. Noise Reduction in Raman Spectra: Finite Impulse Response Filtration versus Savitzky–Golay Smoothing. J. Raman Spectrosc. 2007, 38, 1174–1179. [Google Scholar] [CrossRef]
- Barton, S.; Alakkari, S.; O’Dwyer, K.; Ward, T.; Hennelly, B. Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra. Sensors 2021, 21, 4623. [Google Scholar] [CrossRef] [PubMed]
- Barton, S.J.; Ward, T.E.; Hennelly, B.M. Algorithm for Optimal Denoising of Raman Spectra. Anal. Methods 2018, 10, 3759–3769. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.; Yuen, C.; Padmanabhan, S.; Beuerman, R.W.; Liu, Q. Recovery of Raman Spectra with Low Signal-to-Noise Ratio Using Wiener Estimation. Opt. Express 2014, 22, 12102. [Google Scholar] [CrossRef] [PubMed]
Major Parts | Description | Model |
---|---|---|
Excitation source | A laser with λgreen = 532 nm was used for all sample measurements. | DPSS, DHL-W532-500 mW |
Sampling unit | A standard optical microscope was used as a sampling unit with a microscope objective of 80× and NA = 0.7. | AMDSP XUM102 |
Monochromator unit | For the spectral analysis of the scattered light. | LSMO-6 Spectrum Acquisition System with diffraction grating of 11,000 grooves/mm |
Additional parts | Description | Model |
Bandpass filter (BPF) | The filter used for the elimination of the sideband lines of the DPSS laser. | Thor Labs FL532-1 |
Notch filter (NF) | Two filters were used to eliminate the stray light mainly produced by intensive Rayleigh elastic scattering positioned at the exit of the microscope. | Thor Labs NF533-17 |
Focusing lens | Lens used to focus incoming scattered light from the microscope onto the slit of the monochromator. | Solagon 1:1.2/25 mm |
Zoom lens | The zoom lens that enabled variable spectral resolution, positioned instead of a second collimating mirror. | Fujinon Lynx II A 18 × 8.5, 1:1.7/8.5–153 mm, 2× Barlow |
CCD detector | Used for the detection of scattered light. | Trius Pro 694 Monochromatic |
Shutter | Used for the acquisition of dark frame. | Thor Labs SHB05 |
Material | Measurement | Form | |
---|---|---|---|
Si | Raman with variable ZF | solid-state | |
S | Raman with variable ZF | powder | |
TiO2/P25 | Raman | powder | |
TiO2/800°, 1 h | Raman | powder |
Si | ||||||||
---|---|---|---|---|---|---|---|---|
Curves | MIN ZF | MAX ZF | ||||||
A | b [cm−1] | σ | FWHM | A | b [cm−1] | σ | FWHM | |
P1 | 1967.66 | −526.66 | 41.20 | 97.02 | 7636.75 | −518.7 | 5.67 | 13.35 |
P2 | 2372.75 | 334.23 | 70.51 | 166.05 | n/a | n/a | ||
P3 | 20,646.45 | 524.01 | 27.01 | 63.61 | 72,894.81 | 520.24 | 5.44 | 12.81 |
S | ||||||||
Curves | MIN ZF | MAX ZF | ||||||
A | b [cm−1] | σ | FWHM | A | b [cm−1] | σ | FWHM | |
P1 | 3073.43 | −479.84 | 37.99 | 89.48 | 9557.08 | −474.18 | 7.55 | 17.8 |
P2 | n/a | n/a | 2308.23 | −439.01 | 10.33 | 24.30 | ||
P3 | n/a | n/a | 3064.33 | −257.13 | 7.26 | 17.11 | ||
P4 | 5439.25 | −247.75 | 34.02 | 80.11 | 22768.3 | −229.7 | 6.08 | 14.33 |
P5 | n/a | n/a | 2932.75 | 208.63 | 6.69 | 15.74 | ||
P6 | 3566.65 | 250.08 | 39.2 | 92.28 | 6432.75 | 236.03 | 12.07 | 28.43 |
P7 | n/a | n/a | 9199.62 | 433.24 | 10.51 | 24.76 | ||
P8 | 16,268.6 | 475.94 | 32.68 | 76.97 | 49,008.5 | 472.44 | 7.76 | 18.25 |
Interval [cm−1] | Material | SS | df | MS | F | p-Value | Fcritical |
---|---|---|---|---|---|---|---|
Si | |||||||
450–600 | Between groups | 63.43 | 1 | 63.43 | 0.035 | 0.86 | 3.86 |
Within groups | 1,580,470 | 852 | 1855.02 | ||||
Total | 1,580,533 | 853 | |||||
S | |||||||
400–550 | Between groups | 5.79 | 1 | 5.79 | 0.003 | 0.96 | 3.86 |
Within groups | 1,623,253 | 862 | 1889.70 | ||||
Total | 1,623,259 | 863 | |||||
TiO2 P25 | |||||||
350–800 | Between groups | 9096.03 | 1 | 9096.03 | 0.44 | 0.51 | 3.85 |
Within groups | 60,507,703 | 2899 | 20,871.92 | ||||
Total | 60,516,799 | 2900 | |||||
TiO2–800° | |||||||
350–800 | Between groups | 5382.30 | 1 | 5382.30 | 0.32 | 0.58 | 3.85 |
Within groups | 44,032,882 | 2603 | 16,916.21 | ||||
Total | 44,038,264 | 2604 |
Material | System | Max Peak [arb. units] | σb [arb. units] | SNR |
---|---|---|---|---|
Si | Reference | 6056.7 | 9.5831 | 632.0173 |
Prototype | 4281.1 | 22.0753 | 193.9335 | |
S | Reference | 58,326 | 37.0754 | 1573.2 |
Prototype | 106,940 | 129.4070 | 826.3716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavić, I.; Kaštelan, N.; Adamczyk, A.; Ivanda, M. Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology. Sensors 2024, 24, 4284. https://doi.org/10.3390/s24134284
Pavić I, Kaštelan N, Adamczyk A, Ivanda M. Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology. Sensors. 2024; 24(13):4284. https://doi.org/10.3390/s24134284
Chicago/Turabian StylePavić, Ivan, Nediljko Kaštelan, Arkadiusz Adamczyk, and Mile Ivanda. 2024. "Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology" Sensors 24, no. 13: 4284. https://doi.org/10.3390/s24134284
APA StylePavić, I., Kaštelan, N., Adamczyk, A., & Ivanda, M. (2024). Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology. Sensors, 24(13), 4284. https://doi.org/10.3390/s24134284