Low-Power Magnetic Displacement Sensor Based on RISC-V Embedded System
Abstract
:1. Introduction
2. Related Work
2.1. RISC-V Architecture in Embedded Systems
2.2. Displacement Sensors Based on Magnetic Flux Measurement
3. Porting Method of Hall Sensors
3.1. Embedded Development Environment and Toolchain for RISC-V
3.2. Porting and Interface Design of Hall Sensor Drivers
4. Implementation of Displacement Sensors
4.1. Principles of Magnetic Flux Measurement
4.2. PM-MFM Methods
4.3. Hardware Selection and Configuration
4.4. Hardware Interface with Hall Sensor Module
4.5. Implementation of Data Acquisition and Processing Algorithms
5. Experiments
5.1. Experimental Setup
5.2. Validation of Sensor
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Hao, Q.; Xu, D.; Wang, J.; Ma, J.; Zhang, J.; Liu, J.; Wang, X. Real-Time Instruction Execution Monitoring with Hardware-Assisted Security Monitoring Unit in RISC-V Embedded Systems. In Proceedings of the 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), Hangzhou, China, 16–19 September 2022; pp. 192–196. [Google Scholar] [CrossRef]
- Mao, B.; Tan, N.; Chong, T.; Li, L. A CLIC Extension Based Fast Interrupt System for Embedded RISC-V Processors. In Proceedings of the 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 22–24 October 2021; pp. 109–113. [Google Scholar] [CrossRef]
- Cui, E.; Li, T.; Wei, Q. RISC-V Instruction Set Architecture Extensions: A Survey. IEEE Access 2023, 11, 24696–24711. [Google Scholar] [CrossRef]
- Molina-Robles, R.; Arnaud, A.; Miguez, M.; Gak, J.; Chacón-Rodríguez, A.; García-Ramírez, R. An Energy Consumption Benchmark for a Low-Power RISC-V Core Aimed at Implantable Medical Devices. IEEE Embed. Syst. Lett. 2023, 15, 57–60. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Gao, X. Work-in-Progress: RISC-V Based Low-cost Embedded Trace Processing System. In Proceedings of the 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Shanghai, China, 7–14 October 2022; pp. 31–32. [Google Scholar] [CrossRef]
- Santos, D.A.; Luza, L.M.; Zeferino, C.A.; Dilillo, L.; Melo, D.R. A Low-Cost Fault-Tolerant RISC-V Processor for Space Systems. In Proceedings of the 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Marrakech, Morocco, 1–3 April 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Kadomoto, J.; Irie, H.; Sakai, S. Evaluation of Different Microarchitectures for Energy-Efficient RISC-V Cores. In Proceedings of the 2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Penang, Malaysia, 19–22 December 2022; pp. 78–84. [Google Scholar] [CrossRef]
- Saussereau, J.; Leroux, C.; Begueret, J.B.; Jego, C. AsteRISC: A Size-Optimized RISC-V Core for Design Space Exploration. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Dvoynikov, V.M.; Smirnov, V.A.; Burylov, D.A. Implementation of a Monitoring System for an Electrical Network Based on a Contactless Temperature Sensor and a Hall Effect Current Sensor. In Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Saint Petersburg, Russia, 25–28 January 2022; pp. 604–607. [Google Scholar] [CrossRef]
- Krause, D.; Stahl-Offergeld, M.; Sand, M.; Kohlbrenner, C.; Weigel, R. Sensor Resistance Based Sensitivity Temperature Drift Tracking of Integrated 3D Hall Sensors. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Kumar, R.; Sontakke, B.A.; Anoop, C. A Hall Effect Based Through Shaft Angle Sensor—Analysis and Signal Conditioning. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Fan, H.; Li, S.; Cen, Y.; Feng, Q.; Heidari, H. A Horizontal Hall Sensor 3D Comsol Model. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 893–896. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, B.; Liu, Z.; Fan, X.; Xu, Z.; Chen, R.; Wei, J.; Tan, Z. Miscut Angle Modulation on the Anomalous Hall Effect Based Magnetic Sensor for Better Performances. In Proceedings of the 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), Chengdu, China, 11–13 November 2022; pp. 2472–2475. [Google Scholar] [CrossRef]
- Reza, M.; Rahman, H.A. Biasing Hall Effect Sensors through Voltage Divider Technique. In Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021; pp. 283–288. [Google Scholar] [CrossRef]
- Zheng, L.; Nie, W.; Liu, Z.; Xiang, B. Wide-Range Displacement Sensor for Vibration Measurement of Magnetically Suspended Air-Blower. IEEE Sens. J. 2022, 22, 15876–15883. [Google Scholar] [CrossRef]
- Sun, S.; Han, Y.; Zhang, H.; He, Z.; Tang, Q. A Novel Inductive Angular Displacement Sensor with Multi-Probe Symmetrical Structure. IEEE Sens. J. 2022, 22, 3087–3096. [Google Scholar] [CrossRef]
- Fischer, N.; Kriechbaum, J.; Berwanger, D.; Mathis-Ullrich, F. Compliant Hall-Effect Sensor Array for Passive Magnetic Instrument Tracking. IEEE Sens. Lett. 2023, 7, 2500404. [Google Scholar] [CrossRef]
- Polley, A.; Ramaswamy, S.M.; Haroun, B.S. Residual Offset in Silicon Hall-Effect Sensor: Analytical Formula, Stress Effects, and Implications for Octagonal Hall Plate Geometry. IEEE Sens. J. 2020, 20, 11283–11291. [Google Scholar] [CrossRef]
- De Araujo Gewehr, C.G.; Moraes, F.G. Improving the Efficiency of Cryptography Algorithms on Resource-Constrained Embedded Systems via RISC-V Instruction Set Extensions. In Proceedings of the 2023 36th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI), Rio de Janeiro, Brazil, 28 August–1 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Johns, M.; Kazmierski, T.J. A Minimal RISC-V Vector Processor for Embedded Systems. In Proceedings of the 2020 Forum for Specification and Design Languages (FDL), Kiel, Germany, 15–17 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Soulard, G.; Lachance, G.P.; Boisselier, E.; Boukadoum, M.; Miled, A. RISC-V Based Processor Architecture for an Embedded Visible Light Spectrophotometer. In Proceedings of the 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 18–20 September 2022; pp. 360–363. [Google Scholar] [CrossRef]
- Wang, S.; Duan, B.; Zhang, B.; Zheng, Y.; Huang, L.; Zhang, L. An optimized lightweight RISC-V microprocessor for audio noise reduction applications. In Proceedings of the 2023 IEEE 3rd International Conference on Intelligent Technology and Embedded Systems (ICITES), Huzhou, China, 27–30 October 2023; pp. 57–61. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Y.; Huang, Y.; Liang, C.; Dong, Y.; Kang, Y.; Feng, B. A Displacement Sensing Method Based on Permanent Magnet and Magnetic Flux Measurement. Sensors 2022, 22, 4326. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yu, Z.; Peng, K.; Chen, Z.; Liu, X. A Compact and High-Precision Capacitive Absolute Angular Displacement Sensor. IEEE Sens. J. 2020, 20, 11173–11182. [Google Scholar] [CrossRef]
- Mustapha, A.A.; Hassan, O.S.; Ataro, T.D.; Rahman, M.S.U.; Abou-Khousa, M.A. A Wide-Range Transmission Line-Based Linear Displacement Sensor. IEEE Sens. J. 2023, 23, 18609–18623. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhu, C. An Eddy Current Displacement Sensor Based on Piecewise Linearization of Inverse Function. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Republic of Korea, 31 October–3 November 2021; pp. 1953–1957. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Peng, S.; Guo, Y.; Tang, Q. An Inductive Linear Displacement Sensor with Complementary Resonant Coupling Units. IEEE Sens. J. 2021, 21, 25659–25667. [Google Scholar] [CrossRef]
- Dupré, N.; Bidaux, Y.; Dubrulle, O.; Close, G.F. A Stray-Field-Immune Magnetic Displacement Sensor with 1. IEEE Sens. J. 2020, 20, 11405–11411. [Google Scholar] [CrossRef]
SoC Name | Lichee Pi 4A with Yeying 1520 |
CPU | RV64GCV C910*4@2 GHz |
RAM | 8 GB 64 bits LPDDR4 |
Memory | 32 G TF-Card |
Ethernet | 1000 Mbps*2 |
USB | USB 3.0*4 |
GPIO | UART, IIC, SPI |
Power | <10 W (3.4 W measured at work in average) |
Hall Sensor | A3144 connected with analog GPIO |
0.1–6.0 mm | 0.6–4.7 mm | ||||
---|---|---|---|---|---|
(mm) | (%) | mm) | (%) | ||
0.76 | 0.9980 | 27.56 | 0.83 | 0.9989 | 8.95 |
0.78 | 0.9982 | 23.68 | 0.86 | 0.9990 | 7.63 |
0.80 | 0.9986 | 20.52 | 0.89 | 0.9992 | 6.38 |
0.82 | 0.9988 | 19.87 | 0.92 | 0.9995 | 5.36 |
0.84 | 0.9991 | 13.37 | 0.95 | 0.9996 | 5.18 |
0.86 | 0.9992 | 10.65 | 0.98 | 0.9996 | 4.55 |
0.88 | 0.9992 | 9.98 | 1.01 | 0.9996 | 4.98 |
0.90 | 0.9992 | 10.89 | 1.04 | 0.9996 | 5.49 |
0.92 | 0.9990 | 11.96 | 1.07 | 0.9991 | 5.96 |
0.94 | 0.9989 | 12.04 | 1.10 | 0.9989 | 6.31 |
0.1–5.0 mm | 0.6–4.7 mm | ||||
---|---|---|---|---|---|
(mm) | (%) | mm) | (%) | ||
0.76 | 0.9976 | 30.59 | 0.83 | 0.9986 | 10.36 |
0.78 | 0.9981 | 25.36 | 0.86 | 0.9989 | 8.57 |
0.80 | 0.9986 | 23.47 | 0.89 | 0.9990 | 7.63 |
0.82 | 0.9987 | 22.16 | 0.92 | 0.9993 | 6.36 |
0.84 | 0.9990 | 15.32 | 0.95 | 0.9995 | 5.59 |
0.86 | 0.9991 | 10.21 | 0.98 | 0.9995 | 5.59 |
0.88 | 0.9991 | 12.41 | 1.01 | 0.9995 | 6.07 |
0.90 | 0.9990 | 13.22 | 1.04 | 0.9993 | 6.35 |
0.92 | 0.9990 | 15.36 | 1.07 | 0.9991 | 6.68 |
0.94 | 0.9989 | 15.91 | 1.10 | 0.9987 | 7.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Song, Y.; Yang, H. Low-Power Magnetic Displacement Sensor Based on RISC-V Embedded System. Sensors 2024, 24, 4224. https://doi.org/10.3390/s24134224
Sun T, Song Y, Yang H. Low-Power Magnetic Displacement Sensor Based on RISC-V Embedded System. Sensors. 2024; 24(13):4224. https://doi.org/10.3390/s24134224
Chicago/Turabian StyleSun, Tao, Yue Song, and Huiyun Yang. 2024. "Low-Power Magnetic Displacement Sensor Based on RISC-V Embedded System" Sensors 24, no. 13: 4224. https://doi.org/10.3390/s24134224
APA StyleSun, T., Song, Y., & Yang, H. (2024). Low-Power Magnetic Displacement Sensor Based on RISC-V Embedded System. Sensors, 24(13), 4224. https://doi.org/10.3390/s24134224