An Improved YOLOv8 Network for Detecting Electric Pylons Based on Optical Satellite Image
Abstract
:1. Introduction
- (1)
- The innovative DSLSK-SPPF module, an enhancement of the original SPPF module, incorporates the large selective kernel block (LSK block) with large kernel convolution. This advancement more effectively captures the prominent shadow and transmission line features associated with electric pylons, thereby improving the model’s capability to handle intricate backgrounds. Additionally, integrating dynamic snake convolution (DS-Conv) into the LSK block enhances the model’s adaptation to the complex shapes of electric pylons, which are influenced by imaging and environmental factors. Moreover, the spatial selection mechanism in the DSLSK-SPPF module significantly improves the accuracy of feature selection.
- (2)
- The head section of the original YOLOv8 model has been improved using efficient multi-scale convolution (EMS-Conv), which integrates multi-scale information fusion. This modification enhances the feature representation capability, improving the model’s ability to capture the details of electric pylons while maintaining its lightweight design.
2. The Architecture of YOLOv8
3. Improved YOLOv8 Network
3.1. Optimization of Spatial Pyramid Pooling Faster
3.2. Optimization of Head
4. Results and Analysis
4.1. Experimental Environment
4.2. Dataset and Evaluation Metrics
4.3. Performance Comparison of Different Spatial Pyramid Pooling
4.4. Ablation Experiment
4.5. Performance Comparison of Different Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, T.; Zeng, Y.; Hu, Z. Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning. IEEE Access 2019, 7, 114955–114965. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Liu, Y. Application of unmanned aerial vehicle hangar in transmission tower inspection considering the risk probabilities of steel towers. IEEE Access 2019, 7, 159048–159057. [Google Scholar] [CrossRef]
- Shajahan, N.-M.; Kuruvila, T.; Kumar, A.-S.; Davis, D. Automated inspection of monopole tower using drones and computer vision. In Proceedings of the 2019 2nd International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 28 February–2 March 2019; pp. 187–192. [Google Scholar]
- Chen, D.; Guo, X.; Huang, P.; Li, F. Safety distance analysis of 500kv transmission line tower uav patrol inspection. IEEE Lett. Electromagn. Compat. Pract. Appl. 2020, 2, 124–128. [Google Scholar] [CrossRef]
- Dutta, T.; Sharma, H.; Vellaiappan, A.; Balamuralidhar, P. Image analysis-based automatic detection of transmission towers using aerial imagery. In Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, Santiago de Compostela, Spain, 17–19 June 2015; pp. 641–651. [Google Scholar]
- Tragulnuch, P.; Chanvimaluang, T.; Kasetkasem, T.; Ingprasert, S.; Isshiki, T. High voltage transmission tower detection and tracking in aerial video sequence using object-based image classification. In Proceedings of the 2018 International Conference on Embedded Systems and Intelligent Technology & International Conference on Information and Communication Technology for Embedded Systems (ICESIT-ICICTES), Khon Kaen, Thailand, 7–9 May 2018; pp. 1–4. [Google Scholar]
- Zhu, G.; Zhang, W.; Wang, M.; Wang, J.; Fang, X. Corner guided instance segmentation network for power lines and transmission towers detection. Exp. Syst. Appl. 2023, 234, 121087. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, E.; Tian, Y.; Zhao, M.; Liang, Z. High-voltage power transmission tower detection based on faster R-CNN and YOLO-V3. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 8750–8755. [Google Scholar]
- Gao, Y.; Yang, W.; Li, C.; Zou, F. Improved SSD-based transmission tower detection in SAR images. J. Eng. 2019, 2019, 7161–7164. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Chen, Q.; Zhang, Z. Power transmission tower CFAR detection algorithm based on integrated superpixel window and adaptive statistical model. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2326–2329. [Google Scholar]
- Li, J.; Li, Y.; Jiang, H.; Zhao, Q. Hierarchical Transmission Tower Detection from High-Resolution SAR Image. Remote Sens. 2022, 14, 625. [Google Scholar] [CrossRef]
- Wu, B.; Wang, H.; Chen, J. Feature Enhancement Using Multi-Baseline SAR Interferometry-Correlated Synthesis Images for Power Transmission Tower Detection in Mountain Layover Area. Remote Sens. 2023, 15, 3823. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, H.; Wang, C.; Zhang, B.; Wu, F. High-voltage transmission towers detection using hybrid polarimetric SAR data. In Proceedings of the 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Changsha, China, 11–14 June 2014; pp. 353–356. [Google Scholar]
- Tian, G.; Meng, S.; Bai, X.; Zhi, Y.; Ou, W.; Fei, X.; Tan, Y. Electric tower target identification based on high-resolution SAR image and deep learning. J. Phys. Conf. Ser. 2020, 1453, 012117. [Google Scholar] [CrossRef]
- Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T. Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. 2016, 119, 10–31. [Google Scholar] [CrossRef]
- Qiao, S.; Sun, Y.; Zhang, H. Deep learning based electric pylon detection in remote sensing images. Remote Sens. 2020, 12, 1857. [Google Scholar] [CrossRef]
- Tian, G.; Meng, S.; Bai, X.; Liu, L.; Zhi, Y.; Zhao, B.; Meng, L. Research on Monitoring and Auxiliary Audit Strategy of Transmission Line Construction Progress Based on Satellite Remote Sensing and Deep Learning. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 73–78. [Google Scholar]
- Yang, H.; Wang, S.; Chen, Y.; Yan, Z.; Cheng, Y.; Wang, T.; Wei, R. Improving power transmission tower state recognition in remote sensing images using cooperative Adaboost-MobileNet. Remote Sens. Lett. 2023, 14, 124–134. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, F.; You, H.; Hu, Y. Shadow Information-Based Slender Targets Detection Method in Optical Satellite Images. IEEE Geosci. Remote. Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, F.; You, H.; Hu, Y. STC-Det: A Slender Target Detector Combining Shadow and Target Information in Optical Satellite Images. Remote Sens. 2021, 13, 4183. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Jia, Z.; Li, Z. BL-YOLOv8: An improved road defect detection model based on YOLOv8. Sensors 2023, 23, 8361. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Wen, G.; Li, M.; Luo, Y.; Shi, C.; Tian, Y. The improved YOLOv8 algorithm based on EMSPConv and SPE-head modules. Multimed. Tools. Appl. 2024, 83, 61007–61023. [Google Scholar] [CrossRef]
- Lin, Y.; He, H.; Tai, H.-M.; Chen, F.; Yin, Z. Rotation and scale invariant target detection in optical remote sensing images based on pose-consistency voting. Multimed. Tools. Appl. 2017, 76, 14461–14483. [Google Scholar] [CrossRef]
- Kasper-Eulaers, M.; Hahn, N.; Berger, S.; Sebulonsen, T.; Myrland, Ø.; Kummervold, P.-E. Detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5. Algorithms 2021, 14, 114. [Google Scholar] [CrossRef]
- Luan, S.; Li, C.; Xu, P.; Huang, Y.; Wang, X. MI-YOLO: More information based YOLO for insulator defect detection. J. Electron. Imaging 2023, 32, 043014. [Google Scholar] [CrossRef]
- Huang, D.; Tu, Y.; Zhang, Z.; Ye, Z. A Lightweight Vehicle Detection Method Fusing GSConv and Coordinate Attention Mechanism. Sensors 2024, 24, 2394. [Google Scholar] [CrossRef]
- Su, P.; Han, H.; Liu, M.; Yang, T.; Liu, S. MOD-YOLO: Rethinking the YOLO architecture at the level of feature information and applying it to crack detection. Expert Syst. Appl. 2024, 237, 121346. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Q.; Zheng, Z.; Cheng, M.-M.; Yang, J.; Li, X. Large Selective Kernel Network for Remote Sensing Object Detection. arXiv 2023, arXiv:2303.09030. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–23 June 2022; pp. 11976–11986. [Google Scholar]
- Qi, Y.; He, Y.; Qi, X.; Zhang, Y.; Yang, G. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 16070–16079. [Google Scholar]
- Sun, K.; Zheng, Y.; Yang, X.; Chen, X.; Jia, W. Semi-supervised breast cancer pathology image segmentation based on fine-grained classification guidance. Med. Biol. Eng. Comput. 2024, 62, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Moehrs, S.; Del Guerra, A.; Herbert, D.-J.; Mandelkern, M.-A. A detector head design for small-animal PET with silicon photomultipliers (SiPM). Phys. Med. Biol. 2006, 51, 1113. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.-S.; Follmann, D.-A. Longitudinal Data Analysis, Shared-Parameter Models; Chapman and Hall/CRC: London, UK, 2008; pp. 447–466. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.-M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Wang, Z.; Li, Y.; Liu, Y.; Meng, F. Improved object detection via large kernel attention. Expert Syst. Appl. 2024, 240, 122507. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Adarsh, P.; Rathi, P.; Kumar, M. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; pp. 687–694. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. arXiv 2023, arXiv:2304.08069. [Google Scholar]
Hyperparameter Options | Setting |
---|---|
Input Resolution | 640 × 640 |
Initial Learning Rate 0 (lr0) | 0.01 |
Learning Rate Float (lrf) | 0.001 |
Batch_size | 64 |
Epochs | 200 |
Models | P (%) | R (%) | [email protected] (%) | GFLOPs | Para (M) | FPS/(Frames − 1) |
---|---|---|---|---|---|---|
YOLOv8n + SPP | 91.7 | 89.0 | 93.8 | 8.7 | 3.2 | 141 |
YOLOv8n + SPPF | 89.0 | 88.3 | 91.2 | 8.7 | 3.2 | 146 |
YOLOv8n + SPPCSPC | 93.2 | 89.7 | 93.6 | 10.0 | 4.8 | 118 |
YOLOv8n + SPPFCSPC | 90.3 | 89.8 | 93.5 | 10.0 | 4.8 | 123 |
YOLOv8n + DSLSK-SPPF | 94.3 | 88.7 | 94.9 | 9.9 | 6.6 | 116 |
Baseline | DSLSK-SPPF | EMS-Head | P (%) | R (%) | [email protected] (%) | GFLOPs | Para (M) | FPS/(Frames − 1) |
---|---|---|---|---|---|---|---|---|
YOLO v8n | 89.0 | 88.3 | 91.2 | 8.7 | 3.2 | 146 | ||
√ | 94.3 | 88.7 | 94.9 | 9.9 | 6.6 | 116 | ||
√ | 94.2 | 89.0 | 94.3 | 5.9 | 2.6 | 156 | ||
√ | √ | 93.4 | 92.0 | 95.5 | 7.7 | 6.3 | 111 |
Models | P (%) | R (%) | [email protected](%) | GFLOPs | Para(M) | FPS/(Frames − 1) |
---|---|---|---|---|---|---|
Faster R-CNN | 87.1 | 91.7 | 90.8 | 941.0 | 28.3 | 11 |
SSD | 85.1 | 74.7 | 80.6 | 62.7 | 26.3 | 76 |
YOLOv3 | 95.3 | 83.7 | 92.3 | 282.6 | 103.7 | 119 |
YOLOv3-tiny | 92.9 | 83.4 | 90.9 | 18.9 | 12.1 | 222 |
YOLOv5n | 90.3 | 85.0 | 91.5 | 7.7 | 2.7 | 145 |
YOLOv5s | 96.1 | 84.4 | 92.7 | 24.0 | 9.1 | 126 |
YOLOv8n | 89.0 | 88.3 | 91.2 | 8.7 | 3.2 | 146 |
YOLOv8s | 93.0 | 88.2 | 92.5 | 33.7 | 17.6 | 128 |
YOLOv10n | 94.4 | 83.5 | 91.2 | 8.2 | 2.7 | 113 |
YOLOv10s | 91.7 | 89.4 | 92.3 | 24.4 | 8.0 | 110 |
RT-DETR-R18 | 94.0 | 84.3 | 92.6 | 56.9 | 19.9 | 86 |
EP-YOLOv8 | 93.4 | 92.0 | 95.5 | 7.7 | 6.3 | 111 |
Models | P (%) | R (%) | [email protected](%) |
---|---|---|---|
Faster R-CNN | 82.0 | 88.9 | 86.9 |
SSD | 84.4 | 76.0 | 79.9 |
YOLOv3 | 88.6 | 88.7 | 91.8 |
YOLOv3-tiny | 90.1 | 81.7 | 88.4 |
YOLOv5n | 92.3 | 79.2 | 89.3 |
YOLOv5s | 94.5 | 85.5 | 92.2 |
YOLOv8n | 89.8 | 81.5 | 88.4 |
YOLOv8s | 90.7 | 86.4 | 91.6 |
YOLOv10n | 85.8 | 86.0 | 90.4 |
YOLOv10s | 91.2 | 87.0 | 90.3 |
RT-DETR-R18 | 89.8 | 82.2 | 90.0 |
EP-YOLOv8 | 92.8 | 89.4 | 94.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, X.; Sun, Y.; Zhao, Y.; Lu, D.; Gao, Y.; Zhang, Y. An Improved YOLOv8 Network for Detecting Electric Pylons Based on Optical Satellite Image. Sensors 2024, 24, 4012. https://doi.org/10.3390/s24124012
Chi X, Sun Y, Zhao Y, Lu D, Gao Y, Zhang Y. An Improved YOLOv8 Network for Detecting Electric Pylons Based on Optical Satellite Image. Sensors. 2024; 24(12):4012. https://doi.org/10.3390/s24124012
Chicago/Turabian StyleChi, Xin, Yu Sun, Yingjun Zhao, Donghua Lu, Yan Gao, and Yiting Zhang. 2024. "An Improved YOLOv8 Network for Detecting Electric Pylons Based on Optical Satellite Image" Sensors 24, no. 12: 4012. https://doi.org/10.3390/s24124012