Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater
Abstract
:1. Introduction
2. Methods of Pesticide Detection
2.1. Instrumental Techniques
2.2. Spectroscopic Techniques
2.3. Emerging Sensor Technologies
2.3.1. Electrochemical Sensors
2.3.2. Biosensors
- (a)
- Immunosensors
- (b)
- Enzyme biosensors
- (c)
- Molecular imprinted polymers
- (d)
- Aptamers
- (e)
- Whole-cell biosensors
2.3.3. Paper-Based Sensors
Method | Merits | Demerits | References |
---|---|---|---|
High-power liquid chromatography (HPLC) | Can analyse small organic molecules, large polymers, and biomolecules. Its combination with mass spectrometry (MS) gives it the perfect ability of separation, increasing sensitivity to trace amounts and specificity. Excellent separation efficiency Detection results can be reproduced. | Not easy to teach to a new person Large quantities of expensive organic compounds are required Laborious calibrations and sample preparation especially for routine analysis. | [87] |
Liquid chromatography-mass spectrometry (LCMS) | Good linearity High recoveries and precision Low LOD and LOQ Can analyse many pesticides compared to GCMS Can exclusively detect carbamates and triazines. Can detect OC better | Requires expensive equipment Requires a specially trained technician | [88,89] |
Gas chromatography-mass spectrometry (GCMS) | Highly sensitive to non-polar, volatile pesticides Can be used selectively or universally Has two modes of operation (full scan and selected ion-monitoring (SIM)) Good response | Can analyse fewer compounds compared to LCMS Sample preparation needs derivation Injection head temperatures decompose some pesticides Responds to impurities in the carrier gas, air leakage in the GC system, or stationary bleeding from the column | [90] |
UV-VIS-NIR | Allow rapid measurements Fast response Chemical free Non-destructive Low operating costs Environmentally friendly Reduced reagents required for analysis | Preconcentration steps are required Near infra-red (NIR) spectra are more complicated to analyse due to the combination and overlapping of vibrational modes Multivariate techniques required for analysis Lower sensitivity Light scattering by suspended solid particles causes serious errors Matrix interference Longer duration of tests UV is harmful to humans | [46,50,91,92,93,94] |
RAMAN | Water and glass show low Raman scattering Non-destructive Does not need complex sample preparation Symmetrical bonds show strong Raman while they are inactive in infra-red Shows better spatial resolution than IR A single instrument is used in the entire vibrational mode while IR uses different Useful in the analysis of unknown substances | Fluorescence of impurities is very strong. Raman spectra are weak Expensive instruments | [95,96] |
SERS | Simple pre-treatment Selective in detecting complex environmental pollutants Signal amplification Quick analyte identification using fingerprinting SERs spectra Portable appliances | SERS substrate deteriorates over time. High cost Affected by matrix effects Poor reproducibility | [97,98] |
BIOSENSORS | High sensitivity Fast response Robust Low cost Miniaturization In situ and real-time monitoring High specificity Applicable in complex mixtures Simple operation | Qualitative or semi-quantitative results Legal limitations for genetic modification of organisms Some biological materials can be denatured by the environment (PH, temp, ions) Most devices are still in the laboratory stage | [56,61] |
Paper-based sensors | Non-expert operation Portable Easily disposable Low detection limits Fast response High reaction speed High specificity Multiple analyte identification Small volumes of reagents | Short shelf life of a few days Some have poor stability Most devices still in laboratory stage Long fabrication time | [99,100,101,102] |
3. Internet of Things for Environmental Monitoring
3.1. Internet of Things
3.2. Communication Protocols
3.2.1. Message Queuing Telemetry Transport (MQTT)
3.2.2. Hypertext Transfer Protocol (HTTP)
3.2.3. Constrained Application Protocol (CoAP)
3.2.4. Advanced Message Queuing Protocol (AMQP)
3.2.5. WebSocket
3.2.6. Extensible Messaging and Presence Protocol (XMPP)
3.3. The Cloud and Computing Models
Computing Models
- (a)
- Cloud computing
- (b)
- Edge computing
- (c)
- Fog computing
- (d)
- Mist computing
4. Wireless Sensor Network for Water Quality Sensing
5. Innovations in Pesticide Detection and Environmental Analysis
5.1. Machine Learning for Enhanced Pesticide Detection
5.2. Big Data Analytics in Environmental Monitoring
6. Integration of Technologies for Comprehensive Solutions
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Kass, L.; Gomez, A.L.; Altamirano, G.A. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol. Cell. Endocrinol. 2020, 508, 110789. [Google Scholar] [CrossRef] [PubMed]
- Onyando, Z.O.; Omukunda, E.; Okoth, P.; Khatiebi, S.; Omwoma, S.; Otieno, P.; Osano, O.; Lalah, J. Screening and prioritization of pesticide application for potential human health and environmental risks in largescale farms in western kenya. Agriculture 2023, 13, 1178. [Google Scholar] [CrossRef]
- Heinrich Böll Foundation. Pesticides Atlas. 14 October 2022. Available online: https://ke.boell.org/sites/default/files/2022-10/the-pesticide-atlas.pdf (accessed on 3 January 2023).
- Weisenburger, D.D. A review and update with perspective of evidence that the herbicide glyphosate (roundup) is a cause of non-hodgkin lymphoma. Clin. Lymphoma Myeloma Leuk. 2021, 21, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, G.; Liu, Z.; Wang, H.; Guo, X.; Xu, B. Effects of glyphosate exposure on honeybees. Environ. Toxicol. Pharmacol. 2022, 90, 103792. [Google Scholar] [CrossRef] [PubMed]
- Asmare, B.A.; Freyer, B.; Bingen, J. Women in agriculture: Pathways of pesticide exposure, potential health risks and vulnerability in sub-saharan africa. Environ. Sci. Eur. 2022, 34, 89. [Google Scholar] [CrossRef]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S. A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J. Microbiol. 2020, 60, 125–138. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Toalá, J.E.; Cruz-Monterrosa, R.G.; Liceaga, A.M. Beyond human nutrition of edible insects: Health benefits and safety aspects. Insects 2022, 13, 1007. [Google Scholar] [CrossRef] [PubMed]
- United Nations and UNESCO. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water (Poster); UNESCO: Paris, France, 2023; Available online: https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000384778 (accessed on 15 January 2024).
- Tegegne, G.; Melesse, A.M. Multimodel ensemble projection of hydro-climatic extremes for climate change impact assessment on water resources. Water Resour. Manag. 2020, 34, 3019–3035. [Google Scholar] [CrossRef]
- Moros, J.; Armenta, S.; Garrigues, S.; de la Guardia, M. Near infrared determination of diuron in pesticide formulations. Anal. Chim. Acta 2005, 543, 124–129. [Google Scholar] [CrossRef]
- Gómez, J.K.C.; Puentes, Y.A.N.; Niño, D.D.C.; Acevedo, C.M.D. Detection of Pesticides in Water through an Electronic Tongue and Data Processing Methods. Water 2023, 15, 624. [Google Scholar] [CrossRef]
- Verma, N.; Bhardwaj, A. Biosensor technology for Pesticides—A review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.; Akbari, A.; Norouzi, L. Development of a novel hollow fiber- pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sens. Actuators B Chem. 2018, 272, 415–424. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Katsriku, F.A.; Abdulai, J.-D.; Engmann, F. Smart river monitoring using wireless sensor networks. Wirel. Commun. Mob. Comput. 2020, 2020, 8897126. [Google Scholar] [CrossRef]
- Ghozali, M.I.; Sugiharto, W.H.; Susanto, H.; Budihardjo, M.A.; Suryono, S. Measurement performance quality of services (QoS) to optimizing on wireless sensor network topology for water pollution monitoring system. J. Phys. Conf. Ser. 2021, 1943, 12019. [Google Scholar] [CrossRef]
- Laha, S.R.; Pattanayak, B.K.; Pattnaik, S. Advancement of environmental monitoring system using IoT and sensor: A comprehensive analysis. AIMS Environ. Sci. 2022, 9, 771–800. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Adu-Manu, K.S.; Engmann, F.; Sarfo-Kantanka, G.; Baiden, G.E.; Dulemordzi, B.A. WSN protocols and security challenges for environmental monitoring applications: A survey. J. Sens. 2022, 2022, 1628537. [Google Scholar] [CrossRef]
- Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/crowdsensing: A review of applications, signal processing, and future perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef]
- Tariq, A.; Azam, F.; Anwar, M.W.; Zahoor, T.; Muzaffar, A.W. Recent trends in underwater wireless sensor networks (UWSNs)–a systematic literature review. Program. Comput. Softw. 2020, 46, 699–711. [Google Scholar] [CrossRef]
- Ibrahim, D.S.; Mahdi, A.F.; Yas, Q.M. Challenges and issues for wireless sensor networks: A survey. J. Glob. Sci. Res. 2021, 6, 1079–1097. [Google Scholar]
- Zulkifli, C.Z.; Garfan, S.; Talal, M.; Alamoodi, A.H.; Alamleh, A.; Ahmaro, I.Y.Y.; Sulaiman, S.; Ibrahim, A.B.; Zaidan, B.B.; Ismail, A.R.; et al. IoT-based water monitoring systems: A systematic review. Water 2022, 14, 3621. [Google Scholar] [CrossRef]
- Manjakkal, L.; Mitra, S.; Petillot, Y.R.; Shutler, J.; Scott, E.M.; Willander, M.; Dahiya, R. Connected sensors, innovative sensor deployment, and intelligent data analysis for online water quality monitoring. IEEE Internet Things 2021, 8, 13805–13824. [Google Scholar] [CrossRef]
- Etikasari, B.; Kautsar, S.; Riskiawan, H.Y.; Setyohadi, D. Wireless Sensor Network Development in Unmanned Aerial Vehicle (Uav) for Water Quality Monitoring System. IOP Conf. Ser. Earth Environ. Sci. 2020, 411, 012061. [Google Scholar] [CrossRef]
- Jan, F.; Min-Allah, N.; Düştegör, D. Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water 2021, 13, 1729. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Mustapha, A.; Hayder, G.; Salisu, A. Applications of IoT and Artificial Intelligence in Water Quality Monitoring and Prediction: A Review. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 968–975. [Google Scholar]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Hu, Y.; Zhou, C.; Lan, W.; Fu, H.; She, Y. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sens. Actuators B Chem. 2021, 329, 129135. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef]
- Hu, B.; Sun, D.; Pu, H.; Wei, Q. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 2020, 217, 120998. [Google Scholar] [CrossRef]
- Jafari, S.; Guercetti, J.; Geballa-Koukoula, A.; Tsagkaris, A.S.; Nelis, J.L.; Marco, M.; Salvador, J.; Gerssen, A.; Hajslova, J.; Elliott, C. ASSURED point-of-need food safety screening: A critical assessment of portable food analyzers. Foods 2021, 10, 1399. [Google Scholar] [CrossRef]
- Sohrabi, H.; Hemmati, A.; Majidi, M.R.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. TrAC Trends Anal. Chem. 2021, 143, 116344. [Google Scholar] [CrossRef]
- Cho, G.; Azzouzi, S.; Zucchi, G.; Lebental, B. Electrical and electrochemical sensors based on carbon nanotubes for the monitoring of chemicals in water—A review. Sensors 2021, 22, 218. [Google Scholar] [CrossRef] [PubMed]
- Nangare, S.N.; Patil, S.R.; Patil, A.G.; Khan, Z.G.; Deshmukh, P.K.; Tade, R.S.; Mahajan, M.R.; Bari, S.B.; Patil, P.O. Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: Current challenges and future prospects. J. Nanostruct. Chem. 2021, 12, 729–764. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Losacco, D.; Bisaccia, D.; Triozzi, M.; Uricchio, V.F. The monitoring of pesticides in water matrices and the analytical criticalities: A review. TrAC Trends Anal. Chem. 2021, 144, 116423. [Google Scholar] [CrossRef]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. TrAC-Trends Anal. Chem. 2020, 123, 115772. [Google Scholar] [CrossRef]
- Jewell, K.S.; Kunkel, U.; Ehlig, B.; Thron, F.; Schlüsener, M.; Dietrich, C.; Wick, A.; Ternes, T.A. Comparing mass, retention time and tandem mass spectra as criteria for the automated screening of small molecules in aqueous environmental samples analyzed by liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8541. [Google Scholar] [CrossRef] [PubMed]
- Pico, Y.; Alfarhan, A.H.; Barcelo, D. How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar. TrAC Trends Anal. Chem. 2020, 122, 115720. [Google Scholar] [CrossRef]
- Romagnoli, M.; Scarparo, A.; Catani, M.; Giannì, B.; Pasti, L.; Cavazzini, A.; Franchina, F.A. Development and validation of a GC × GC-ToFMS method for the quantification of pesticides in environmental waters. Anal. Bioanal. Chem. 2023, 415, 4545–4555. [Google Scholar] [CrossRef]
- Sang, D.; Cimetiere, N.; Giraudet, S.; Tan, R.; Wolbert, D.; Le Cloirec, P. Online SPE-UPLC-MS/MS for herbicides and pharmaceuticals compounds’ determination in water environment: A case study in France and Cambodia. Environ. Adv. 2022, 8, 100212. [Google Scholar] [CrossRef]
- Ghosh, S.; AlKafaas, S.S.; Bornman, C.; Apollon, W.; Hussien, A.M.; Badawy, A.E.; Amer, M.H.; Kamel, M.B.; Mekawy, E.A.; Bedair, H. The application of rapid test paper technology for pesticide detection in horticulture crops: A comprehensive review. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 73. [Google Scholar] [CrossRef]
- Sindhu, S.; Manickavasagan, A. Nondestructive testing methods for pesticide residue in food commodities: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1226–1256. [Google Scholar] [CrossRef] [PubMed]
- Tsagkaris, A.S.; Pulkrabova, J.; Hajslova, J. Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods 2021, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, N.; Shapter, J.G. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid. Heliyon 2023, 9, e14686. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.W. Spectroscopic techniques. In Encyclopedia of Forensic Sciences, 3rd ed.; Houck, M.M., Ed.; Elsevier: Oxford, UK, 2023; Available online: https://www.sciencedirect.com/science/article/pii/B9780128236772000787 (accessed on 20 March 2024).
- Gowen, A.A.; Tsuchisaka, Y.; O’donnell, C.; Tsenkova, R. Investigation of the Potential of Near Infrared Spectroscopy for the Detection and Quantification of Pesticides in Aqueous Solution. Am. J. Anal. Chem. 2011, 2, 53–62. [Google Scholar] [CrossRef]
- Su, D.; Li, H.; Yan, X.; Lin, Y.; Lu, G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends Anal. Chem. 2020, 134, 116126. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A comprehensive review on raman spectroscopy applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Terry, L.R.; Sanders, S.; Potoff, R.H.; Kruel, J.; Jain, M.; Guo, H. Applications of surface-enhanced Raman spectroscopy in environmental detection. Anal. Sci. Adv. 2022, 3, 113–145. [Google Scholar] [CrossRef]
- Ong, T.T.X.; Blanch, E.W.; Jones, O.A.H. Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment. Sci. Total Environ. 2020, 720, 137601. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Q.; Chang, C.; Wang, R.; Liu, Z.; He, L. Recent progress regarding electrochemical sensors for the detection of typical pollutants in water environments. Anal. Sci. 2022, 38, 55–70. [Google Scholar] [CrossRef]
- Mohamed, H.M. Sensors and biosensors for environment contaminants. In Nanosensor Technology for Environmental Monitoring; Springer Nature: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Saha, C.; Bhushan, M.; Singh, L.R. Pesticide sensing using electrochemical techniques: A comprehensive review. J. Iran. Chem. Soc. 2022, 20, 243–256. [Google Scholar] [CrossRef]
- Zhang, C.; She, Y.; Li, T.; Zhao, F.; Jin, M.; Guo, Y.; Zheng, L.; Wang, S.; Jin, F.; Shao, H.; et al. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal. Bioanal. Chem. 2017, 409, 7133–7144. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wen, Y.; Wang, F.; He, P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J. Anim. Sci. Biotechnol. 2021, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Hashwan, S.S.B.; Khir, M.H.B.M.; Al-Douri, Y.; Ahmed, A.Y. Recent Progress in the Development of Biosensors for Chemicals and Pesticides Detection. IEEE Access 2020, 8, 82514–82527. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Z.; Li, X. Advances in pesticide biosensors: Current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2012, 405, 63–90. [Google Scholar] [CrossRef]
- Gee, S.J.; Hammock, B.D.; Van Emon, J.M. Section 1—Introduction. In Environmental Immunochemical Analysis Detection of Pesticides and Other Chemicals; Gee, S.J., Hammock, B.D., Van Emon, J.M., Eds.; William Andrew Publishing: Westwood, NJ, USA, 1996; Available online: https://www.sciencedirect.com/science/article/pii/B978081551397150004X (accessed on 3 January 2024).
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef]
- Vaid, K.; Dhiman, J.; Kumar, S.; Kumar, V. Citrate and glutathione capped gold nanoparticles for electrochemical immunosensing of atrazine: Effect of conjugation chemistry. Environ. Res. 2023, 217, 114855. [Google Scholar] [CrossRef]
- Fernández, B.P.; Mercader, J.V.; Abad-Fuentes, A.; Checa-Orrego, B.I.; Costa-García, A.; de la Escosura-Muñiz, A. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 2019, 209, 120465. [Google Scholar] [CrossRef] [PubMed]
- Campanile, R.; Elia, V.C.; Minopoli, A.; Babar, Z.U.D.; di Girolamo, R.; Morone, A.; Sakač, N.; Velotta, R.; Della Ventura, B.; Iannotti, V. Magnetic micromixing for highly sensitive detection of glyphosate in tap water by colorimetric immunosensor. Talanta 2023, 253, 123937. [Google Scholar] [CrossRef]
- Reynoso, E.C.; Romero-Guido, C.; Rebollar-Pérez, G.; Torres, E. Chapter 16–Enzymatic biosensors for the detection of water pollutants. In Nanomaterials for Biocatalysis, (Micro and Nano Technologies); Castro, G.R., Nadda, A.K., Nguyen, T.A., Qi, X., Yasin, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Available online: https://www.sciencedirect.com/science/article/pii/B9780128244364000125 (accessed on 30 December 2023). [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.A.; Amorim, C.G.; Araujo, A.N.; Gritsok, D.; Rodriguez-Diaz, J.M.; Montenegro, M.C.B.S.M. Development of an inexpensive and rapidly preparable enzymatic pencil graphite biosensor for monitoring of glyphosate in waters. Sci. Total. Environ. 2023, 855, 158865. [Google Scholar] [CrossRef] [PubMed]
- Tun, W.S.T.; Saenchoopa, A.; Daduang, S.; Daduang, J.; Kulchat, S.; Patramanon, R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. RSC Adv. 2023, 13, 9603–9614. [Google Scholar]
- Lah, N.F.C.; Ahmad, A.L.; Low, S.C. Molecular imprinted membrane biosensor for pesticide detection: Perspectives and challenges. Polym. Adv. Technol. 2020, 32, 17–30. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: A review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef] [PubMed]
- Elshafey, R.; Radi, A.-E. Molecularly imprinted copolymer/reduced graphene oxide for the electrochemical detection of herbicide propachlor. J. Appl. Electrochem. 2022, 52, 1761–1771. [Google Scholar] [CrossRef]
- Peng, S.; Yang, S.; Zhang, X.; Jia, J.; Chen, Q.; Lian, Y.; Wang, A.; Zeng, B.; Yang, H.; Li, J. Analysis of imidacloprid residues in mango, cowpea and water samples based on portable molecular imprinting sensors. PLoS ONE 2021, 16, e0257042. [Google Scholar] [CrossRef] [PubMed]
- Kadam, U.S.; Hong, J.C. Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [Google Scholar] [CrossRef]
- Liu, M.; Khan, A.; Wang, Z.; Liu, Y.; Yang, G.; Deng, Y.; He, N. Aptasensors for pesticide detection. Biosens. Bioelectron. 2019, 130, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Kamkrua, N.; Ngernsutivorakul, T.; Limwichean, S.; Eiamchai, P.; Chananonnawathorn, C.; Pattanasetthakul, V.; Ricco, R.; Choowongkomon, K.; Horprathum, M.; Nuntawong, N. Au nanoparticle-based surface-enhanced raman spectroscopy aptasensors for paraquat herbicide detection. ACS Appl. Nano Mater. 2023, 6, 1072–1082. [Google Scholar] [CrossRef]
- Talari, F.F.; Bozorg, A.; Faridbod, F.; Vossoughi, M. A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. J. Environ. Chem. Eng. 2021, 9, 104878. [Google Scholar] [CrossRef]
- Aynalem, B.; Muleta, D. Microbial biosensors as pesticide detector: An overview. J. Sensors 2021, 2021, 5538857. [Google Scholar] [CrossRef]
- Le Gall, J.; Vasilijević, S.; Battaglini, N.; Mattana, G.; Noël, V.; Brayner, R.; Piro, B. Algae-functionalized hydrogel-gated organic field-effect transistor. application to the detection of herbicides. Electrochim. Acta 2021, 372, 137881. [Google Scholar] [CrossRef]
- Prudkin-Silva, C.; Lanzarotti, E.; Álvarez, L.; Vallerga, M.B.; Factorovich, M.; Morzan, U.N.; Gómez, M.P.; González, N.P.; Acosta, Y.M.; Carrizo, F. A cost-effective algae-based biosensor for water quality analysis: Development and testing in collaboration with peasant communities. Environ. Technol. Innov. 2021, 22, 101479. [Google Scholar] [CrossRef]
- Ahmed, S.; Bui, M.-P.N.; Abbas, A. Paper-based chemical and biological sensors: Engineering aspects. Biosens. Bioelectron. 2016, 77, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Coatsworth, P.; Shi, X.; Zhi, J.; Hu, L.; Yan, R.; Güder, F.; Yu, H. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sensors Diagn. 2022, 1, 312–342. [Google Scholar] [CrossRef]
- Sankar, K.; Lenisha, D.; Janaki, G.; Juliana, J.; Kumar, R.S.; Selvi, M.C.; Srinivasan, G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta 2020, 208, 120408. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, M.M.; Nguyen, T.A.; Arduini, F.; Bagheri, H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Microchim. Acta 2020, 187, 621. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tian, L.; Guo, M.; Xu, X.; Li, Q.; Weng, H. A double-film screening card for rapid detection of organophosphate and carbamate pesticide residues by one step in vegetables and fruits. Food Control 2017, 81, 23–29. [Google Scholar] [CrossRef]
- Timchenko, Y.V. Advantages and disadvantages of high-performance liquid chromatography (HPCL). J. Environ. Anal. Chem. 2021, 8, 335. [Google Scholar]
- Xu, F.; Yu, J.-Y.; Wang, Q.-S.; Fu, Y.; Zhang, H.; Wu, Y.-L. Simultaneous determination of 25 pesticides in Zizania latifolia by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry. Sci. Rep. 2019, 9, 10031. [Google Scholar] [CrossRef]
- Alder, L.; Greulich, K.; Kempe, G.; Vieth, B. Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 2006, 25, 838–865. [Google Scholar] [CrossRef]
- Raina, R. Chemical analysis of pesticides using GC/MS, GC/MS/MS, and LC/MS/MS. In Pesticides-Strategies for Pesticides Analysis; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Partial least squares-near infrared determination of pesticides in commercial formulations. Vib. Spectrosc. 2007, 44, 273–278. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Armenta, S.; Garrigues, S.; de la Guardia, M. Mid- and near-infrared determination of metribuzin in agrochemicals. Vib. Spectrosc. 2008, 46, 82–88. [Google Scholar] [CrossRef]
- Saranwong, S.; Kawano, S. The reliability of pesticide determinations using near infrared spectroscopy and the dry-extract system for infrared (DESIR) technique. J. Near Infrared Spectrosc. 2007, 15, 227–236. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Zhang, J.; Min, S. A fast determination of insecticide deltamethrin by spectral data fusion of UV–vis and NIR based on extreme learning machine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 247, 119119. [Google Scholar] [CrossRef]
- Kuptsov, A.H.; Zhizhin, G.N. (Eds.) Handbook of Fourier Transform Raman and Infrared Spectra of Polymers; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kuptsov, A.H.; Zhizhin, G.N. Important advantages of raman spectroscopy. Phys. Sci. Data 1998, 45, xii–xiv. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Galvanic replacement-free deposition of au on ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X. Nanostructure-based surface-enhanced raman spectroscopy techniques for pesticide and veterinary drug residues screening. Bull. Environ. Contam. Toxicol. 2021, 107, 194–205. [Google Scholar] [CrossRef]
- Bordbar, M.M.; Sheini, A.; Hashemi, P.; Hajian, A.; Bagheri, H. Disposable paper-based biosensors for the point-of-care detection of hazardous contaminations—A review. Biosensors 2021, 11, 316. [Google Scholar] [CrossRef]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [PubMed]
- Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2012, 42, 450–457. [Google Scholar]
- Thakur, A.; Kumar, A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. Sci. Total. Environ. 2022, 834, 155219. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Bhandari, R.; Pinca-Bretotean, C.; Sharma, C.; Dhakad, S.K.; Mathur, A. A study of trends and industrial prospects of Industry 4.0. Mater. Today Proc. 2021, 47, 2364–2369. [Google Scholar] [CrossRef]
- Ranjan, P.; Rao, R.S.; Kumar, K.; Sharma, P. Wireless Communication: Advancements and Challenges; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Areqi, M.A.; Zahary, A.T.; Ali, M.N. State-of-the-art device-to-device communication solutions. IEEE Access 2023, 11, 46734–46764. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Marques, G.; Miranda, N.; Bhoi, A.K.; Garcia-Zapirain, B.; Hamrioui, S.; Díez, I.d.l.T. Internet of things and enhanced living environments: Measuring and mapping air quality using cyber-physical systems and mobile computing technologies. Sensors 2020, 20, 720. [Google Scholar] [CrossRef] [PubMed]
- Aira, J.; Olivares, T.; Delicado, F.M. SpectroGLY: A low-cost IoT-based ecosystem for the detection of glyphosate residues in waters. IEEE Trans. Instrum. Meas. 2022, 71, 6005610. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, H.; Zhou, W.; Qiu, Z.; Chen, C.; Qileng, A.; Li, K.; Liu, Y. Capsulation of AuNCs with AIE effect into Metal–Organic framework for the marriage of a fluorescence and colorimetric biosensor to detect organophosphorus pesticides. Anal. Chem. 2021, 93, 7275–7282. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Yang, L.; Li, Z.; Wan, Y.; Mao, D.; Deng, R.; Zhou, Q.; Yang, Y.; Tan, W. A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics. J. Hazard. Mater. 2022, 436, 129199. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, M. A portable smartphone-based sensing system using a 3D-printed chip for on-site biochemical assays. Sensors 2018, 18, 4002. [Google Scholar] [CrossRef]
- Li, J.-H.; Deng, X.-L.; Zhao, Y.-L.; Zhang, X.-Y.; Bai, Y.-P. Based enzymatic colorimetric assay for rapid malathion detection. Appl. Biochem. Biotechnol. 2021, 193, 2534–2546. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Xu, X.; Niu, X.; Wang, M.; Zhu, H.; Pan, J. Analyte-triggered oxidase-mimetic activity loss of Ag3PO4/UiO-66 enables colorimetric detection of malathion completely free from bioenzymes. Sens. Actuators B Chem. 2021, 338, 129866. [Google Scholar] [CrossRef]
- Huang, S.; Yao, J.; Li, B.; Ning, G.; Xiao, Q. Integrating target-responsive CD-CdTe QD-based ratiometric fluorescence hydrogel with smartphone for visual and on-site determination of dichlorvos. Microchim. Acta 2021, 188, 318. [Google Scholar] [CrossRef]
- Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion. Sens. Actuators B Chem. 2020, 322, 128580. [Google Scholar] [CrossRef]
- Luo, X.; Huang, G.; Li, Y.; Guo, J.; Chen, X.; Tan, Y.; Tang, W.; Li, Z. Dual-modes of ratiometric fluorescent and smartphone-integrated colorimetric detection of glyphosate by carbon dots encapsulated porphyrin metal–organic frameworks. Appl. Surf. Sci. 2022, 602, 154368. [Google Scholar] [CrossRef]
- Xue, J.; Mao, K.; Cao, H.; Feng, R.; Chen, Z.; Du, W.; Zhang, H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem. 2024, 434, 137456. [Google Scholar] [CrossRef] [PubMed]
- Sicard, C.; Glen, C.; Aubie, B.; Wallace, D.; Jahanshahi-Anbuhi, S.; Pennings, K.; Daigger, G.T.; Pelton, R.; Brennan, J.D.; Filipe, C.D.M. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015, 70, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Vaseashta, A.; Duca, G.; Culighin, E.; Bogdevici, O.; Khudaverdyan, S.; Sidorenko, A. Smart and Connected Sensors Network for Water Contamination Monitoring and Situational Awareness. In Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security; Springer Nature: Berlin, Germany, 2020; pp. 283–296. [Google Scholar]
- Contreras-Castillo, J.; Guerrero-Ibañez, J.A.; Santana-Mancilla, P.C.; Anido-Rifón, L. SAgric-IoT: An IoT-based platform and deep learning for greenhouse monitoring. Appl. Sci. 2023, 13, 1961. [Google Scholar] [CrossRef]
- Yungaicela-Naula, N.M.; Vargas-Rosales, C.; Perez-Diaz, J.A. SDN-based architecture for transport and application layer DDoS attack detection by using machine and deep learning. IEEE Access 2021, 9, 108495–108512. [Google Scholar] [CrossRef]
- Ting, L.; Khan, M.; Sharma, A.; Ansari, M.D. A secure framework for IoT-based smart climate agriculture system: Toward blockchain and edge computing. J. Intell. Syst. 2022, 31, 221–236. [Google Scholar] [CrossRef]
- Al-Masri, E.; Kalyanam, K.R.; Batts, J.; Kim, J.; Singh, S.; Vo, T.; Yan, C. Investigating messaging protocols for the internet of things (IoT). IEEE Access 2020, 8, 94880–94911. [Google Scholar] [CrossRef]
- Donta, P.K.; Srirama, S.N.; Amgoth, T.; Annavarapu, C.S.R. Survey on recent advances in IoT application layer protocols and machine learning scope for research directions. Digit. Commun. Netw. 2021, 8, 727–744. [Google Scholar] [CrossRef]
- Năstase, L.; Sandu, I.E.; Popescu, N. An experimental evaluation of application layer protocols for the internet of things. Stud. Inform. Control 2017, 26, 403–412. [Google Scholar] [CrossRef]
- Wytrębowicz, J.; Cabaj, K.; Krawiec, J. Messaging protocols for IoT systems—A pragmatic comparison. Sensors 2021, 21, 6904. [Google Scholar] [CrossRef]
- Bayılmış, C.; Ebleme, M.A.; Çavuşoğlu, Ü.; Küçük, K.; Sevin, A. A survey on communication protocols and performance evaluations for Internet of Things. Digit. Commun. Netw. 2022, 8, 1094–1104. [Google Scholar] [CrossRef]
- Glaroudis, D.; Iossifides, A.; Chatzimisios, P. Survey, comparison and research challenges of IoT application protocols for smart farming. Comput. Netw. 2020, 168, 107037. [Google Scholar] [CrossRef]
- Amjad, A.; Azam, F.; Anwar, M.W.; Butt, W.H. A systematic review on the data interoperability of application layer protocols in industrial IoT. IEEE Access 2021, 9, 96528–96545. [Google Scholar] [CrossRef]
- Ghotbou, A.; Khansari, M. Comparing application layer protocols for video transmission in IoT low power lossy networks: An analytic comparison. Wirel. Netw. 2021, 27, 269–283. [Google Scholar] [CrossRef]
- Chen, Y. IoT, cloud, big data and AI in interdisciplinary domains. Simul. Model. Prac. Theory 2020, 102, 102070. [Google Scholar] [CrossRef]
- Almolhis, N.; Alashjaee, A.M.; Duraibi, S.; Alqahtani, F.; Moussa, A.N. The Security Issues in IoT-Cloud: A Review. In Proceedings of the 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 28–29 February 2020; pp. 191–196. [Google Scholar] [CrossRef]
- Alam, T. Cloud Computing and its role in the Information Technology. IAIC Trans. Sustain. Digit. Innov. 2020, 1, 108–115. [Google Scholar]
- Gupta, B.; Mittal, P.; Mufti, T. A Review on Amazon Web Service (AWS), Microsoft Azure, Google cloud Platform (GCP) Services. In Proceedings of the 2nd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2020, Jamia Hamdard, India, 27–28 February 2020. [Google Scholar]
- Shen, S.; Han, Y.; Wang, X.; Wang, Y. Computation offloading with multiple agents in edge-computing–supported IoT. ACM Trans. Sens. Netw. 2019, 16, 1–27. [Google Scholar] [CrossRef]
- Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Mansouri, Y.; Babar, M.A. A review of edge computing: Features and resource virtualization. J. Parallel Distrib. Comput. 2021, 150, 155–183. [Google Scholar] [CrossRef]
- Singh, J.; Singh, P.; Gill, S.S. Fog computing: A taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 2021, 157, 56–85. [Google Scholar] [CrossRef]
- Kalyani, Y.; Collier, R. A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture. Sensors 2021, 21, 5922. [Google Scholar] [CrossRef] [PubMed]
- Mechalikh, C.; Taktak, H.; Moussa, F. PureEdgeSim: A simulation framework for performance evaluation of cloud, edge and mist computing environments. Comput. Sci. Inf. Syst. 2021, 18, 43–66. [Google Scholar] [CrossRef]
- Patil, H.K.; Chen, T.M. Chapter 16—Wireless sensor network security. In Computer and Information Security Handbook, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Singh, R.S.; Gelmecha, D.J.; Ayane, T.H.; Sinha, D.K. Chapter 4—Functional framework for IoT-based agricultural system. In AI, Edge and IoT-Based Smart Agriculture, (Intelligent Data-Centric Systems); Abraham, A., Dash, S., Rodrigues, J.J.P.C., Acharya, B., Pani, S.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; Available online: https://www.sciencedirect.com/science/article/pii/B9780128236949000104DOI:10.1016/B978-0-12-823694-9.00010-4 (accessed on 18 January 2024).
- Gupta, D.; Khanna, A.; Kansal, V.; Fortino, G.; Hassanien, A.E. Cloud computing overview of wireless sensor network (WSN). In Proceedings of the Second Doctoral Symposium on Computational Intelligence, Lucknow, India, 6 March 2021; Springer: Singapore; Pte. Limited: Singapore, 2021. [Google Scholar] [CrossRef]
- Olatinwo, S.O.; Joubert, T.-H. Enabling communication networks for water quality monitoring applications: A survey. IEEE Access 2019, 7, 100332–100362. [Google Scholar] [CrossRef]
- Kaur, M.; Sandhu, M.; Mohan, N.; Sandhu, P.S. RFID technology principles, advantages, limitations & its applications. Int. J. Comput. Electr. Eng. 2011, 3, 151. [Google Scholar]
- Shorey, R.; Miller, B. The Bluetooth Technology: Merits and Limitations. In Proceedings of the IEEE International Conference on Personal Wireless Communications, Hyderabad, India, 17–20 December 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 80–84. [Google Scholar] [CrossRef]
- Ramya, C.M.; Shanmugaraj, M.; Prabakaran, R. Study on ZigBee technology. In Proceedings of the 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; pp. 297–301. [Google Scholar]
- Ramezanpour, K.; Jagannath, J.; Jagannath, A. Security and privacy vulnerabilities of 5G/6G and WiFi 6: Survey and research directions from a coexistence perspective. Comput. Netw. 2023, 221, 109515. [Google Scholar] [CrossRef]
- Luvisotto, M.; Pang, Z.; Dzung, D. Ultra High Performance Wireless Control for Critical Applications: Challenges and Directions. IEEE Trans. Ind. Inform. 2016, 13, 1448–1459. [Google Scholar] [CrossRef]
- Pasolini, G. On the LoRa Chirp Spread Spectrum Modulation: Signal Properties and Their Impact on Transmitter and Receiver Architectures. IEEE Trans. Wirel. Commun. 2022, 21, 357–369. [Google Scholar] [CrossRef]
- Faber, M.J.; van der Zwaag, K.M.; dos Santos, W.G.V.; Rocha, H.R.D.O.; Segatto, M.E.; Silva, J.A.L. A theoretical and experimental evaluation on the performance of LoRa technology. IEEE Sens. J. 2020, 20, 9480–9489. [Google Scholar] [CrossRef]
- Mondal, A.; Hanif, M.; Nguyen, H.H. SSK-ICS LoRa: A LoRa-based modulation scheme with constant envelope and enhanced data rate. IEEE Commun. Lett. 2022, 26, 1185–1189. [Google Scholar] [CrossRef]
- Lachtar, A.; Val, T.; Kachouri, A. Elderly monitoring system in a smart city environment using LoRa and MQTT. IET Wirel. Sens. Syst. 2020, 10, 70–77. [Google Scholar] [CrossRef]
- Kelechi, A.H.; Alsharif, M.H.; Anya, A.C.E.; Bonet, M.U.; Uyi, S.A.; Uthansakul, P.; Nebhen, J.; Aly, A.A. Design and implementation of a low-cost portable water quality monitoring system. Comput. Mater. Contin. 2021, 69, 2405–2424. [Google Scholar]
- Islam, M.M.; Arefin, M.S.; Khatun, S.; Mokarrama, M.J.; Mahi, A.M. Developing an Iot Based Water Pollution Monitoring System. In Image Processing and Capsule Networks: ICIPCN 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 561–573. [Google Scholar]
- Promput, S.; Maithomklang, S.; Panya-Isara, C. Design and analysis performance of IoT-based water quality monitoring system using LoRa technology. TEM J. 2023, 12, 29–35. [Google Scholar] [CrossRef]
- Nvs, B.; Saranya, P.L. Chapter 18—Water pollutants monitoring based on internet of things. In Inorganic Pollutants in Water; Devi, P., Singh, P., Kansal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Available online: https://www.sciencedirect.com/science/article/pii/B9780128189658000184DOI:10.1016/B978-0-12-818965-8.00018-4 (accessed on 20 February 2024).
- Lin, J.-Y.; Tsai, H.-L.; Lyu, W.-H. An integrated wireless multi-sensor system for monitoring the water quality of aquaculture. Sensors 2021, 21, 8179. [Google Scholar] [CrossRef] [PubMed]
- Huan, J.; Li, H.; Wu, F.; Cao, W. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquacult. Eng. 2020, 90, 102088. [Google Scholar] [CrossRef]
- Vacariu, L.; Cret, O.; Hangan, A.; Bacotiu, C. Water Parameters Monitoring on a Cyberwater Platform. In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 27–29 May 2015; pp. 797–802. [Google Scholar] [CrossRef]
- Ilie, A.M.C.; Vaccaro, C.; Rogeiro, J.; Leitao, T.E.; Martins, T. Configuration, Programming and Implementation of 3 Smart Water Network Wireless Sensor Nodes for Assessing the Water Quality. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Faustine, A.; Mvuma, A.N. Ubiquitous mobile sensing for water quality monitoring and reporting within lake victoria basin. Wirel. Sens. Netw. 2014, 6, 257–264. [Google Scholar] [CrossRef]
- Singh, S.; Rai, S.; Singh, P.; Mishra, V.K. Real-time water quality monitoring of River Ganga (India) using internet of things. Ecol. Inform. 2022, 71, 101770. [Google Scholar] [CrossRef]
- Geetha, N. IoT based smart water quality monitoring system. Int. J. Nonlinear Anal. Appl. 2021, 12, 1665–1671. [Google Scholar]
- Menon, K.U.; Divya, P.; Ramesh, M.V. Wireless Sensor Network for River Water Quality Monitoring in India. In Proceedings of the 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT’12), Coimbatore, India, 26–28 July 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Nguyen, D.; Phung, P.H. A Reliable and Efficient Wireless Sensor Network System for Water Quality Monitoring. In Proceedings of the 2017 International Conference on Intelligent Environments (IE), Seoul, Republic of Korea, 21–25 August 2017; pp. 84–91. [Google Scholar] [CrossRef]
- Jia, Y. LoRa-based WSNs construction and low-power data collection strategy for wetland environmental monitoring. Wirel. Pers. Commun. 2020, 114, 1533–1555. [Google Scholar] [CrossRef]
- Sendra, S.; Parra, L.; Jimenez, J.M.; Garcia, L.; Lloret, J. LoRa-based Network for Water Quality Monitoring in Coastal Areas. Mob. Netw. Appl. 2023, 28, 65–81. [Google Scholar] [CrossRef]
- Qian, X.; Li, Z.; Meng, Z.; Gao, N.; Zhang, Z. Flexible RFID tag for sensing the total minerals in drinking water via smartphone tapping. IEEE Sens. J. 2021, 21, 24749–24758. [Google Scholar] [CrossRef]
- Sheng, J.; Weixing, W.; Jieping, Y.; Zhongqiang, H. Design a WSN system for monitoring the safety of drinking water quality. IFAC-PapersOnLine 2018, 51, 752–757. [Google Scholar] [CrossRef]
- Reduan, M.H.F.M.; Ali, A.M.M.; Khan, M.R.B. Water quality monitoring system based on microcontroller and LoRa. Malays. J. Sci. Adv. Technol. 2021, 1, 32–35. [Google Scholar] [CrossRef]
- Parra, L.; Viciano-Tudela, S.; Carrasco, D.; Sendra, S.; Lloret, J. Low-cost microcontroller-based multiparametric probe for coastal area monitoring. Sensors 2023, 23, 1871. [Google Scholar] [CrossRef] [PubMed]
- Belsare, A.; Bokde, L.; Wadyalkar, H.; Kokate, P. Wireless Floating WQ(Water Quality) Monitoring System. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 27–29 May 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Alam, A.U.; Clyne, D.; Deen, M.J. A low-cost multi-parameter water quality monitoring system. Sensors 2021, 21, 3775. [Google Scholar] [CrossRef]
- Razman, N.A.; Ismail, W.Z.W.; Razak, M.H.A.; Ismail, I.; Jamaludin, J. Design and analysis of water quality monitoring and filtration system for different types of water in Malaysia. Int. J. Environ. Sci. Technol. 2023, 20, 3789–3800. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Khan, M.A.; Iftikhar, M.; Imran, M.; Haq, Q.E.U. Machine learning techniques for 5G and beyond. IEEE Access 2021, 9, 23472–23488. [Google Scholar] [CrossRef]
- Kour, H.; Gondhi, N. Machine Learning Techniques: A Survey. In Innovative Data Communication Technologies and Application: ICIDCA 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 266–275. [Google Scholar]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Schmidt, J.Q.; Kerkez, B. Machine learning-assisted, process-based quality control for detecting compromised environmental sensors. Environ. Sci. Technol. 2023, 57, 18058–18066. [Google Scholar] [CrossRef]
- Sahin, F.; Celik, N.; Camdal, A.; Sakir, M.; Ceylan, A.; Ruzi, M.; Onses, M.S. Machine learning-assisted pesticide detection on a flexible surface-enhanced raman scattering substrate prepared by silver nanoparticles. ACS Appl. Nano Mater. 2022, 5, 13112–13122. [Google Scholar] [CrossRef]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of pesticide residue level in grape using hyperspectral imaging with machine learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Z.; Zhang, Z.; Sun, X.; Hu, Y.; Wang, H.; Chen, K.; Liu, Q.; Chen, M.; Chen, X. Deep learning-based multicapturer SERS platform on plasmonic nanocube metasurfaces for multiplex detection of organophosphorus pesticides in environmental water. Anal. Chem. 2022, 94, 16006–16014. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Jamal, T.; Diaz-Martinez, J.; Butt, S.A.; Montesano, N.; Tariq, M.I.; De-la-Hoz-Franco, E.; De-La-Hoz-Valdiris, E. Trends and Future Perspective Challenges in Big Data. In Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications, 15–18 October 2019, Arad, Romania; Springer: Singapore, 2022; pp. 309–325. [Google Scholar]
- Adi, E.; Anwar, A.; Baig, Z.; Zeadally, S. Machine learning and data analytics for the IoT. Neural Comput. Appl. 2020, 32, 16205–16233. [Google Scholar] [CrossRef]
- Ahmed, N.; Barczak, A.L.C.; Susnjak, T.; Rashid, M.A. A comprehensive performance analysis of apache hadoop and apache spark for large scale data sets using HiBench. J. Big Data 2020, 7, 110. [Google Scholar] [CrossRef]
- Massarelli, C.; Campanale, C.; Triozzi, M.; Uricchio, V.F. Dynamics of pesticides in surface water bodies by applying data mining to spatiotemporal big data. A case study for the puglia region. Ecol. Inform. 2023, 78, 102342. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, Y.; Chen, W.; Lin, H.; Sun, G.; Guo, P. Design and analysis of a water quality monitoring data service platform. Comput. Mater. Contin. 2021, 66, 389–405. [Google Scholar] [CrossRef]
- Hao, G.-F.; Zhao, W.; Song, B.-A. Big data platform: An emerging opportunity for precision pesticides. J. Agric. Food Chem. 2020, 68, 11317–11319. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, L.; Xing, S.; Li, F.; Wan, B. The Big Data Processing Algorithm for Water Environment Monitoring of the Three Gorges Reservoir Area. Abstr. Appl. Anal. 2014, 2014, 698632. [Google Scholar] [CrossRef]
- Park, S.; Jung, S.; Lee, H.; Kim, J.; Kim, J.-H. Large-scale water quality prediction using federated sensing and learning: A case study with real-world sensing big-data. Sensors 2021, 21, 1462. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, R. Real-time monitoring of physicochemical parameters in water using big data and smart IoT sensors. Environ. Dev. Sustain. 2022, 1–48. [Google Scholar] [CrossRef]
- Moiroux-Arvis, L.; Royer, L.; Sarramia, D.; De Sousa, G.; Claude, A.; Latour, D.; Roussel, E.; Voldoire, O.; Chardon, P.; Vandaële, R.; et al. ConnecSenS, a versatile IoT platform for environment monitoring: Bring water to cloud. Sensors 2023, 23, 2896. [Google Scholar] [CrossRef]
- Da Silva, Y.F.; Freire, R.C.S.; Neto, J.V.D.F. Conception and design of WSN sensor nodes based on machine learning, embedded systems and IoT approaches for pollutant detection in aquatic environments. IEEE Access 2023, 11, 117040–117052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutunga, T.; Sinanovic, S.; Harrison, C.S. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. Sensors 2024, 24, 3191. https://doi.org/10.3390/s24103191
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. Sensors. 2024; 24(10):3191. https://doi.org/10.3390/s24103191
Chicago/Turabian StyleMutunga, Titus, Sinan Sinanovic, and Colin S. Harrison. 2024. "Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater" Sensors 24, no. 10: 3191. https://doi.org/10.3390/s24103191
APA StyleMutunga, T., Sinanovic, S., & Harrison, C. S. (2024). Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. Sensors, 24(10), 3191. https://doi.org/10.3390/s24103191