Minimally Invasive Hypoglossal Nerve Stimulator Enabled by ECG Sensor and WPT to Manage Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Considerations of the EWHGNS
2.1. OSA Detector
2.2. Hypoglossal Nerve–Electrode Interface
2.3. Stimulation Parameters
2.4. Voltage Consideration
2.5. Wireless Power Transfer
2.5.1. Specific Absorption Rate
2.5.2. Operating Frequency
2.6. Data Exchange
2.7. Architecture of the EWHGNS
3. Design and Implementation of The Proposed System
3.1. OSA Detector
3.2. Wireless Power Transfer
3.3. Power Management Module
3.3.1. Rectifier Circuit
3.3.2. Bandgap Reference Circuit
3.3.3. Low-Dropout Regulator Circuit
3.4. Binary Phase-Shift-Keying-Based Data Communication
3.5. Output Stage of Biphasic Current Stimulation
4. Results
4.1. OSA Detector Result
4.2. Wireless Power Transfer Link Results
4.3. Implant Results
4.3.1. Power Management Module
4.3.2. Binary Phase-Shift Keying Building Block
4.3.3. Output Stage of Biphasic Current Stimulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyons, M.M.; Bhatt, N.Y.; Pack, A.I.; Magalang, U.J. Global burden of sleep-disordered breathing and its implications. Respirology 2020, 25, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Sawan, M. Clinical and Research Solutions to Manage Obstructive Sleep Apnea: A Review. Sensors 2021, 21, 1784. [Google Scholar] [CrossRef] [PubMed]
- Seay, E.G.; Keenan, B.T.; Schwartz, A.R.; Dedhia, R.C. Evaluation of Therapeutic Positive Airway Pressure as a Hypoglossal Nerve Stimulation Predictor in Patients with Obstructive Sleep Apnea. JAMA Otolaryngol. Neck Surg. 2020, 146, 691–698. [Google Scholar] [CrossRef]
- Arens, P.; Hänsel, T.; Wang, Y. Hypoglossal Nerve Stimulation Therapy. In Advances in the Diagnosis and Treatment of Sleep Apnea: Filling the Gap between Physicians and Engineers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 351–372. [Google Scholar]
- Kent, D.T.; Carden, K.A.; Wang, L.; Lindsell, C.J.; Ishman, S.L. Evaluation of hypoglossal nerve stimulation treatment in obstructive sleep apnea. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Strollo, P.J.; Soose, R.J.; Maurer, J.T.; de Vries, N.; Cornelius, J.; Froymovich, O.; Hanson, R.D.; Padhya, T.A.; Steward, D.L.; Gillespie, M.B.; et al. Upper-Airway Stimulation for Obstructive Sleep Apnea. N. Engl. J. Med. 2014, 370, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.M.; Costantino, A.; Moffa, A.; Rinaldi, V.; Casale, M. Hypoglossal nerve stimulation in the treatment of obstructive sleep apnea: Patient selection and new perspectives. Nat. Sci. Sleep 2020, 2020, 151–159. [Google Scholar] [CrossRef]
- Lee, J.; Leung, V.; Lee, A.H.; Huang, J.; Asbeck, P.; Mercier, P.P.; Shellhammer, S.; Larson, L.; Laiwalla, F.; Nurmikko, A. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 2021, 4, 604–614. [Google Scholar] [CrossRef]
- Wang, S.H.; Huang, Y.K.; Chen, C.Y.; Tang, L.Y.; Tu, Y.F.; Chang, P.C.; Lee, C.F.; Yang, C.H.; Hung, C.C.; Liu, C.H.; et al. Design of a Bone-Guided Cochlear Implant Microsystem with Monopolar Biphasic Multiple Stimulations and Evoked Compound Action Potential Acquisition and Its In Vivo Verification. IEEE J. Solid-State Circuits 2021, 56, 3062–3076. [Google Scholar] [CrossRef]
- Ortmanns, M.; Rocke, A.; Gehrke, M.; Tiedtke, H.J. A 232-channel epiretinal stimulator ASIC. IEEE J. Solid-State Circuits 2007, 42, 2946–2959. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and management of obstructive sleep apnea: A review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Khurana, S.; Soda, N.; Shiddiky, M.J.; Nayak, R.; Bose, S. Current and future strategies for diagnostic and management of obstructive sleep apnea. Expert Rev. Mol. Diagn. 2021, 21, 1287–1301. [Google Scholar] [CrossRef]
- Mendonca, F.; Mostafa, S.S.; Ravelo-Garcia, A.G.; Morgado-Dias, F.; Penzel, T. A review of obstructive sleep apnea detection approaches. IEEE J. Biomed. Health Inform. 2018, 23, 825–837. [Google Scholar] [CrossRef]
- Almarshad, M.A.; Al-Ahmadi, S.; Islam, M.S.; BaHammam, A.S.; Soudani, A. Adoption of Transformer Neural Network to Improve the Diagnostic Performance of Oximetry for Obstructive Sleep Apnea. Sensors 2023, 23, 7924. [Google Scholar] [CrossRef]
- Ali, M.; Elsayed, A.; Mendez, A.; Savaria, Y.; Sawan, M. Contact and Remote Breathing Rate Monitoring Techniques: A Review. IEEE Sens. J. 2021, 21, 14569–14586. [Google Scholar] [CrossRef] [PubMed]
- Toon, E.; Davey, M.J.; Hollis, S.L.; Nixon, G.M.; Horne, R.S.; Biggs, S.N. Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. J. Clin. Sleep Med. 2016, 12, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40, 07TR01. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Samper, J.M.; Tamantini, C.; Ávila-Navarro, E.; De La Casa-Lillo, M.Á.; Zollo, L.; Sabater-Navarro, J.M.; Cordella, F. An ML-Based Approach to Reconstruct Heart Rate from PPG in Presence of Motion Artifacts. Biosensors 2023, 13, 718. [Google Scholar] [CrossRef]
- Deshmukh, A.; Brown, L.; Barbe, M.F.; Braverman, A.S.; Tiwari, E.; Hobson, L.; Shunmugam, S.; Armitage, O.; Hewage, E.; Ruggieri, M.R., Sr.; et al. Fully Implantable Neural Recording and Stimulation Interfaces: Peripheral Nerve Interface Applications. J. Neurosci. Methods 2019, 333, 108562. [Google Scholar] [CrossRef]
- Xia, F.; Sawan, M. Electrode-Nerve Interface Properties to Treat Patients with OSA through Electrical Stimulation. In Proceedings of the 2021 Sixth International Conference on Advances in Biomedical Engineering (ICABME), Werdanyeh, Lebanon, 7–9 October 2021; pp. 121–124. [Google Scholar] [CrossRef]
- Rondoni, J.; Ni, Q. System and Method of Monitoring for and Reporting on Patient-Made Stimulation Therapy Programming Changes. U.S. Patent 9,839,786, 22 October 2017. [Google Scholar]
- Voghell, J.C.; Sawan, M.; Roy, M.; Bourret, S. Programmable current source dedicated to implantable microstimulators. In Proceedings of the 10th International Conference on Microelectronics (Cat. No. 98EX186), Monastir, Tunisia, 16 December 1998; pp. 67–70. [Google Scholar]
- Xia, F.; Zhang, Z.; Yang, J.; Sawan, M. Compact Power Front-end Management for Wireless Supply of Multi-voltages to Neuromodulators. In Proceedings of the 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Shenzhen, China, 11–13 November 2022; pp. 65–68. [Google Scholar]
- Cheng, L.; Ki, W.H.; Lu, Y.; Yim, T.S. Adaptive on/off delay-compensated active rectifiers for wireless power transfer systems. IEEE J. Solid-State Circuits 2016, 51, 712–723. [Google Scholar]
- Ahn, D.; Ghovanloo, M. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ki, W.H. A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Trans. Biomed. Circuits Syst. 2013, 8, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Lu, Y.; Martins, R.P. A reconfigurable cross-connected wireless-power transceiver for bidirectional device-to-device wireless charging. IEEE J. Solid-State Circuits 2019, 54, 2579–2589. [Google Scholar] [CrossRef]
- Luo, Z.; Sonkusale, S. A novel BPSK demodulator for biological implants. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 1478–1484. [Google Scholar]
- Lo, C.Y.; Hong, H.C. A 0.9 pJ/b, Reference Clock Free, Delay-Based, All-Digital Coherent BPSK Demodulator. IEEE Solid-State Circuits Lett. 2020, 3, 498–501. [Google Scholar] [CrossRef]
- Sun, G.; Muneer, B.; Li, Y.; Zhu, Q. Ultracompact Implantable Design with Integrated Wireless Power Transfer and RF Transmission Capabilities. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 281–291. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, G.; Ghovanloo, M. Analytical Modeling and Optimization of Small Solenoid Coils for Millimeter-Sized Biomedical Implants. IEEE Trans. Microw. Theory Tech. 2017, 65, 1024–1035. [Google Scholar] [CrossRef]
- Lee, H.M.; Ghovanloo, M. A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission. IEEE Trans. Biomed. Circuits Syst. 2012, 7, 213–224. [Google Scholar]
- Wang, L.; Zhan, C.; Tang, J.; Zhao, S.; Cai, G.; Liu, Y.; Huang, Q.; Li, G. Analysis and design of a current-mode bandgap reference with high power supply ripple rejection. Microelectron. J. 2017, 68, 7–13. [Google Scholar] [CrossRef]
- Li, Y.; Shen, X.; Zhang, Z.; Li, G.; Yin, T.; Qi, N.; Liu, J.; Wu, N.; Liu, L.; Chen, Y.; et al. A 0.004-mm 2 O. 7-V 31.654-μW BPSK Demodulator Incorporating Dual-Path Loop Self-Biased PLL. In Proceedings of the 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Shenzhen, China, 11–13 November 2022; pp. 569–573. [Google Scholar]
- Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H. The apnea-ECG database. In Proceedings of the Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; pp. 255–258. [Google Scholar]
- Bozkurt, F.; Uçar, M.K.; Bozkurt, M.R.; Bilgin, C. Detection of abnormal respiratory events with single channel ECG and hybrid machine learning model in patients with obstructive sleep apnea. IRBM 2020, 41, 241–251. [Google Scholar] [CrossRef]
- Viswabhargav, C.S.; Tripathy, R.; Acharya, U.R. Automated detection of sleep apnea using sparse residual entropy features with various dictionaries extracted from heart rate and EDR signals. Comput. Biol. Med. 2019, 108, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Erdenebayar, U.; Kim, Y.J.; Park, J.U.; Joo, E.Y.; Lee, K.J. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram. Comput. Methods Programs Biomed. 2019, 180, 105001. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Qian, X.H.; Cheng, M.S.; Liang, Y.A.; Chen, W.M. A 13.56 MHz 40 mW CMOS High-Efficiency Inductive Link Power Supply Utilizing On-Chip Delay-Compensated Voltage Doubler Rectifier and Multiple LDOs for Implantable Medical Devices. IEEE J. Solid-State Circuits 2014, 49, 2397–2407. [Google Scholar] [CrossRef]
- Ibrahim, A.; Kiani, M. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Mirbozorgi, S.A.; Zhang, P.; Inan, O.T.; Li, W.; Ghovanloo, M. A dual-band wireless power transmission system for evaluating mm-sized implants. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 595–607. [Google Scholar] [CrossRef]
- Lee, H.M.; Park, H.; Ghovanloo, M. A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J. Solid-State Circuits 2013, 48, 2203–2216. [Google Scholar] [CrossRef]
- Mao, F.; Lu, Y.; Seng-Pan, U.; Martins, R.P. A 6.78 MHz active voltage doubler with near-optimal on/off delay compensation for wireless power transfer systems. In Proceedings of the 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 16–19 April 2018; pp. 1–4. [Google Scholar]
- Wilkerson, B.P.; Kang, J.K. A low power BPSK demodulator for wireless implantable biomedical devices. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 626–629. [Google Scholar]
- Cheng, C.H.; Tsai, P.Y.; Yang, T.Y.; Cheng, W.H.; Yen, T.Y.; Luo, Z.; Qian, X.-H.; Chen, Z.-X.; Lin, T.-H.; Chen, W.-H.; et al. A fully integrated 16-channel closed-loop neural-prosthetic CMOS SoC with wireless power and bidirectional data telemetry for real-time efficient human epileptic seizure control. IEEE J. Solid-State Circuits 2018, 53, 3314–3326. [Google Scholar] [CrossRef]
Methods | Advantages | Limitations | Ref. |
---|---|---|---|
PSG | Accurate | Complex instrument; laboratory testing; costly and time-consuming | [11,12] |
ECG | Accurate | Need algorithm to analyze data | [13,14] |
Sound Sensing | Non-contact | Low accuracy; susceptible to noise; in R&D stage | [12,13,15] |
Remote-Based | Non-contact | Sensitive to interference from the subject’s movements and activities; in R&D stage | [12,15] |
Parameters | Value/Technique | |
---|---|---|
OSA monitor | ECG | |
Wireless power transfer | Inductive link | |
RX (size, dimension) | ≈10 mm | |
D (Skin separating TX and RX) | 5 mm | |
Carrier frequency | 2 MHz | |
Data exchange | Modulation type | BPSK |
Information stream | 10 bit | |
Power management | Input (Volt) | AC (1–3.3) |
Output(Volt) | DC (1.2; 1.8; and 3.1) | |
Stimulation stage | Power supply (Volt) | 3.1 |
Stimulus type | Biphasic current | |
Frequency range | 10–40 Hz | |
Current density range | 0–2.4 mA | |
Digital/analog converter | 5 bit | |
Number of channels | 1 | |
Nerve–electrode interface | 1 k, 400 nF |
Name | Expression | Description |
---|---|---|
k | Coupling coefficient of two coils | |
Quality factor of the primary coil | ||
Quality factor of the secondary coil | ||
Quality factor of the load | ||
2f | Angular frequency |
Method | Segmentation | SEN (%) | SPE (%) | PRE (%) | ACC (%) | F1 (%) |
---|---|---|---|---|---|---|
KNN [37] | 60 s | 82.00 | 82.00 | 81.45 | 82.21 | 81.72 |
SVM [38] | 60 s | 81.24 | 69.84 | 72.90 | 75.54 | 76.84 |
RNN [39] | 60 s | 97.00 | 87.00 | 84.70 | 85.40 | 71.79 |
Filter + CNN | 60 s | 88.64 | 85.72 | 83.42 | 86.74 | 85.95 |
120 s | 93.52 | 83.73 | 84.23 | 88.68 | 88.63 |
Description | [40] | [41] | [42] | This Work (Mea.) |
---|---|---|---|---|
Tx: | 245 | 289 | 139 | 88 |
Rx: | 161 | 31 | 22 | 10 |
Coupling: k | 0.1 | 3.5 | N/A | 0.09 |
PTE (air): | 76.3 | N/A | N/A | 39.8 |
PTE (skin): | N/A | N/A | 18 | 31.8 |
Dia. of Rx (mm) | 22 | 1 | 2.5 | 9.2 |
Frequency (MHz) | 13.56 | 20 | 60 | 2 |
Distance (mm) | N/A | 10 | 5 | 5 |
Max PDL (mW) | N/A | 2.2 | N/A | 20 |
Publications | [40] | [43] | [44] | This Work |
---|---|---|---|---|
CMOS process (m) | 0.18 | 0.5 | 0.35 | 0.04 |
Structure | Doubler LDO | Adaptive Active | Doubler | Doubler LDO |
Frequency (MHz) | 13.56 | 2 | 6.78 | 2 |
(V) | 1.192 | 5 | 1–1.7 | 1.4–2.6 |
(V) | 2 | 2.5–4.6 | 3.3 | 3.3 |
(V) | 1.8 | N/A | N/A | 1.2, 1.8, 3.1 |
(V) | 0.38 | N/A | N/A | 0.13 |
PCE (%) | 85 | 72–87 | 92.2 | 77.5 |
(k) | 0.1 | = 2.8 mA | 0.5 | 1 |
Chip Area (mm) (Without PAD) | 0.12 | 0.3 | N/A | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Li, H.; Li, Y.; Liu, X.; Xu, Y.; Fang, C.; Hou, Q.; Lin, S.; Zhang, Z.; Yang, J.; et al. Minimally Invasive Hypoglossal Nerve Stimulator Enabled by ECG Sensor and WPT to Manage Obstructive Sleep Apnea. Sensors 2023, 23, 8882. https://doi.org/10.3390/s23218882
Xia F, Li H, Li Y, Liu X, Xu Y, Fang C, Hou Q, Lin S, Zhang Z, Yang J, et al. Minimally Invasive Hypoglossal Nerve Stimulator Enabled by ECG Sensor and WPT to Manage Obstructive Sleep Apnea. Sensors. 2023; 23(21):8882. https://doi.org/10.3390/s23218882
Chicago/Turabian StyleXia, Fen, Hanrui Li, Yixi Li, Xing Liu, Yankun Xu, Chaoming Fang, Qiming Hou, Siyu Lin, Zhao Zhang, Jie Yang, and et al. 2023. "Minimally Invasive Hypoglossal Nerve Stimulator Enabled by ECG Sensor and WPT to Manage Obstructive Sleep Apnea" Sensors 23, no. 21: 8882. https://doi.org/10.3390/s23218882
APA StyleXia, F., Li, H., Li, Y., Liu, X., Xu, Y., Fang, C., Hou, Q., Lin, S., Zhang, Z., Yang, J., & Sawan, M. (2023). Minimally Invasive Hypoglossal Nerve Stimulator Enabled by ECG Sensor and WPT to Manage Obstructive Sleep Apnea. Sensors, 23(21), 8882. https://doi.org/10.3390/s23218882