Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants
2.3. Apparatus
2.4. Stimuli
2.5. Procedure
2.6. Thermal Data Processing
2.6.1. Infrared Thermal Image Preprocessing
2.6.2. Feature Extraction
2.6.3. Feature Selection
2.6.4. Emotional Classification
2.7. Statistical Analysis
3. Results
3.1. SAM Data
3.2. Thermal Data
3.2.1. Feature Selection
3.2.2. Emotional Experiences Classification
3.2.3. Facial Grayscale Data Variation
4. Discussion
4.1. Valence and Arousal Analysis of Emotional Experiences
4.2. Feature Selection and Classification
4.3. ROI Trends for Different Emotional Experiences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IRTIs | infrared thermal images |
B2C | business-to-consumer |
SVM | support vector machine |
ROIs | regions of interest |
HCI | human-computer interaction |
SAM | Self-Assessment Manikin |
SCL | skin conductance level |
FT | fingertip temperature |
HR | heart rate |
BVP | blood volume pulse |
EDA | electrodermal activity |
GSR | galvanic skin response |
SKT | skin temperature |
RSP | respiration rate |
ERPs | event-related potentials |
EEG | electroencephalogram |
ECG | electrocardiograms |
ANS | autonomic nervous system |
SVM | support vector machine |
GLCM | gray-level cooccurrence matrix |
IAs | information architectures |
LSA | latent semantic analysis |
M | means |
SD | standard deviations |
U+A+ | high usability and high aesthetics |
U+A− | high usability and low aesthetics |
U−A+ | low usability and high aesthetics |
U−A− | low usability and low aesthetics |
ASM | angular second moment |
NCA | neighborhood component analysis |
TP | true positive |
FP | false positive |
FN | false negative |
ANOVA | analysis of variance |
P-Base | positive emotional experiences versus baseline |
N-Base | negative emotional experiences versus baseline |
P-N | negative emotional experiences versus baseline |
References
- Li, R.; Sun, T. Assessing factors for designing a successful B2C E-Commerce website using fuzzy AHP and TOPSIS-Grey methodology. Symmetry 2020, 12, 363. [Google Scholar] [CrossRef]
- Oliveira, T.; Alhinho, M.; Rita, P.; Dhillon, G. Modelling and testing consumer trust dimensions in e-commerce. Comput. Hum. Behav. 2017, 71, 153–164. [Google Scholar] [CrossRef]
- Jin, E.; Oh, J. The role of emotion in interactivity effects: Positive emotion enhances attitudes, negative emotion helps information processing. Behav. Inf. Technol. 2022, 41, 3487–3505. [Google Scholar] [CrossRef]
- Ehsani, F.; Hosseini, M. Investigation to determine elements influencing customer’s satisfaction in the B2C electronic retailing marketplaces. Euromed J. Bus. 2021. [Google Scholar] [CrossRef]
- Cabanac, M. What is emotion? Behav. Process. 2002, 60, 69–83. [Google Scholar] [CrossRef]
- Ekman, P. An Argument for Basic Emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Ortony, A. Are All “Basic Emotions” Emotions? A Problem for the (Basic) Emotions Construct. Perspect. Psychol. Sci. 2022, 17, 41–61. [Google Scholar] [CrossRef]
- Bugnon, L.A.; Calvo, R.A.; Milone, D.H. Dimensional Affect Recognition from HRV: An Approach Based on Supervised SOM and ELM. IEEE Trans. Affect. Comput. 2020, 11, 32–44. [Google Scholar] [CrossRef]
- Avila, A.R.; Akhtar, Z.; Santos, J.F.; O’Shaughnessy, D.; Falk, T.H. Feature Pooling of Modulation Spectrum Features for Improved Speech Emotion Recognition in the Wild. IEEE Trans. Affect. Comput. 2021, 12, 177–188. [Google Scholar] [CrossRef]
- Islam, M.R.; Islam, M.M.; Rahman, M.M.; Mondal, C.; Singha, S.K.; Ahmad, M.; Awal, A.; Islam, M.S.; Moni, M.A. EEG Channel Correlation Based Model for Emotion Recognition. Comput. Biol. Med. 2021, 136, 104757. [Google Scholar] [CrossRef]
- Zhang, J.H.; Yin, Z.; Chen, P.; Nichele, S. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Inf. Fusion 2020, 59, 103–126. [Google Scholar] [CrossRef]
- Russell, J.A. A Circumplex Model of Affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Constants Across Cultures in Face and Emotion. J. Personal. Soc. Psychol. 1971, 17, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Plutchik, R. A general psychoevolutionary theory of emotion. Emot. Theory Res. Exp. 2000, 21, 529–553. [Google Scholar]
- Scherer, K.R. Appraisal considered as a process of multilevel sequential checking. In Appraisal Processes in Emotion Theory Methods Research; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Rawal, N.; Stock-Homburg, R.M. Facial Emotion Expressions in Human-Robot Interaction: A Survey. Int. J. Soc. Robot. 2022, 14, 1583–1604. [Google Scholar] [CrossRef]
- Scherer, K.R.; Dieckmann, A.; Unfried, M.; Ellgring, H.; Mortillaro, M. Investigating Appraisal-Driven Facial Expression and Inference in Emotion Communication. Emotion 2021, 21, 73–95. [Google Scholar] [CrossRef]
- Wang, S.; He, M.; Gao, Z.; He, S.; Ji, Q. Emotion recognition from thermal infrared images using deep Boltzmann machine. Front. Comput. Sci. 2014, 8, 609–618. [Google Scholar] [CrossRef]
- Filippini, C.; Perpetuini, D.; Cardone, D.; Chiarelli, A.M.; Merla, A. Thermal Infrared Imaging-Based Affective Computing and Its Application to Facilitate Human Robot Interaction: A Review. Appl. Sci. 2020, 10, 2924. [Google Scholar] [CrossRef]
- Tcherkassof, A.; Dupre, D. The emotion-facial expression link: Evidence from human and automatic expression recognition. Psychol. Res. 2021, 85, 2954–2969. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion—The self-assessment mannequin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Jukiewicz, M.; Łupkowski, P.; Majchrowski, R.; Marcinkowska, J.; Ratajczyk, D. Electrodermal and thermal measurement of users’ emotional reaction for a visual stimuli. Case Stud. Therm. Eng. 2021, 27, 101303. [Google Scholar] [CrossRef]
- Kimmatkar, N.V.; Babu, B.V. Novel Approach for Emotion Detection and Stabilizing Mental State by Using Machine Learning Techniques. Computers 2021, 10, 37. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V. Time-Frequency Representation and Convolutional Neural Network-Based Emotion Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2901–2909. [Google Scholar] [CrossRef]
- Mahlke, S.; Minge, M.; Thüring, M. Measuring multiple components of emotions in interactive contexts. In Proceedings of the CHI’06 Extended Abstracts on Human Factors in Computing Systems, Montréal, QC, Canda, 22–27 April 2006; pp. 1061–1066. [Google Scholar]
- Guo, F.; Cao, Y.; Ding, Y.; Liu, W.; Zhang, X. A Multimodal Measurement Method of Users’ Emotional Experiences Shopping Online. Hum. Factors Ergon. Manuf. Serv. Ind. 2015, 25, 585–598. [Google Scholar] [CrossRef]
- Liu, W.; Liang, X.; Wang, X.; Guo, F. The evaluation of emotional experience on webpages: An event-related potential study. Cogn. Technol. Work 2019, 21, 317–326. [Google Scholar] [CrossRef]
- Ioannou, S.; Gallese, V.; Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 2014, 51, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, S.; Ebisch, S.; Aureli, T.; Bafunno, D.; Ioannides, H.A.; Cardone, D.; Manini, B.; Romani, G.L.; Gallese, V.; Merla, A. The autonomic signature of guilt in children: A thermal infrared imaging study. PLoS ONE 2013, 8, e79440. [Google Scholar] [CrossRef]
- Salazar-López, E.; Domínguez, E.; Ramos, V.J.; De la Fuente, J.; Meins, A.; Iborra, O.; Gálvez, G.; Rodríguez-Artacho, M.; Gómez-Milán, E. The mental and subjective skin: Emotion, empathy, feelings and thermography. Conscious. Cogn. 2015, 34, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Gioia, F.; Greco, A.; Callara, A.L.; Scilingo, E.P. Towards a contactless stress classification using thermal imaging. Sensors 2022, 22, 976. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.; Sidek, S.; Rusli, N.; Fatai, S. Emotion detection from thermal facial imprint based on GLCM features. ARPN J. Eng. Appl. Sci. 2016, 11, 345–350. [Google Scholar]
- Amalu, W. International Academy of Clinical Thermology Medical Infrared Imaging Standards and Guidelines; International Academy of Clinical Thermology: Foster City, CA, USA, 2018. [Google Scholar]
- Seo, K.-K.; Lee, S.; Chung, B.D.; Park, C. Users’ emotional valence, arousal, and engagement based on perceived usability and aesthetics for web sites. Int. J. Hum. Comput. Interact. 2015, 31, 72–87. [Google Scholar] [CrossRef]
- Ding, W.; Lin, X. Information Architecture: The Design and Integration of Information Spaces. Synth. Lect. Inf. Concepts Retr. Serv. 2017, 1, 410–411. [Google Scholar]
- Blackmon, M.H.; Kitajima, M.; Polson, P.G. Tool for accurately predicting website navigation problems, non-problems, problem severity, and effectiveness of repairs. In Proceedings of the SIGCHI Conference on Human factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 31–40. [Google Scholar]
- Katz, M.A.; Byrne, M.D. Effects of scent and breadth on use of site-specific search on e-commerce Web sites. ACM Trans. Comput. Hum. Interact. (TOCHI) 2003, 10, 198–220. [Google Scholar] [CrossRef]
- Kuo, L.; Chang, T.; Lai, C.-C. Multimedia webpage visual design and color emotion test. Multimed. Tools Appl. 2022, 81, 2621–2636. [Google Scholar] [CrossRef]
- Levenson, R.W. Emotion and the autonomic nervous system: A prospectus for research on autonomic specificity. In Social Psychophysiology and Emotion: Theory and Clinical Applications; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Bradley, J.V. Complete counterbalancing of immediate sequential effects in a Latin square design. J. Am. Stat. Assoc. 1958, 53, 525–528. [Google Scholar] [CrossRef]
- Jian, B.-L.; Chen, C.-L.; Huang, M.-W.; Yau, H.-T. Emotion-specific facial activation maps based on infrared thermal image sequences. IEEE Access 2019, 7, 48046–48052. [Google Scholar] [CrossRef]
- Goulart, C.; Valadao, C.; Delisle-Rodriguez, D.; Funayama, D.; Favarato, A.; Baldo, G.; Binotte, V.; Caldeira, E.; Bastos, T. Visual and Thermal Image Processing for Facial Specific Landmark Detection to Infer Emotions in a Child-Robot Interaction. Sensors 2019, 19, 2844. [Google Scholar] [CrossRef]
- Resendiz-Ochoa, E.; Cruz-Albarran, I.A.; Garduno-Ramon, M.A.; Rodriguez-Medina, D.A.; Osornio-Rios, R.A.; Morales-Hernandez, L.A. Novel expert system to study human stress based on thermographic images. Expert Syst. Appl. 2021, 178, 115024. [Google Scholar] [CrossRef]
- Al Qudah, M.M.M.; Mohamed, A.S.A.; Lutfi, S.L. Affective State Recognition Using Thermal-Based Imaging: A Survey. Comput. Syst. Sci. Eng. 2021, 37, 47–62. [Google Scholar] [CrossRef]
- Cruz-Albarran, I.A.; Benitez-Rangel, J.P.; Osornio-Rios, R.A.; Morales-Hernandez, L.A. Human emotions detection based on a smart-thermal system of thermographic images. Infrared Phys. Technol. 2017, 81, 250–261. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Yang, W.; Wang, K.; Zuo, W. Neighborhood component feature selection for high-dimensional data. J. Comput. 2012, 7, 161–168. [Google Scholar] [CrossRef]
- Goldberger, J.; Roweis, S.T.; Hinton, G.E.; Salakhutdinov, R.R. Neighbourhood Components Analysis; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Chinchor, N. MUC-4 EVALUATION METRICS. In Proceedings of the 4th Message Understanding Conference (MUC-4), McLean, VA, USA, 16–18 June 1992; pp. 22–29. [Google Scholar]
- Minge, M.; Thuring, M. Hedonic and pragmatic halo effects at early stages of User Experience. Int. J. Hum.-Comput. Stud. 2018, 109, 13–25. [Google Scholar] [CrossRef]
- Tuch, A.N.; Roth, S.P.; Hornbaek, K.; Opwis, K.; Bargas-Avila, J.A. Is beautiful really usable? Toward understanding the relation between usability, aesthetics, and affect in HCI. Comput. Hum. Behav. 2012, 28, 1596–1607. [Google Scholar] [CrossRef]
- Mahlke, S.; Minge, M. Consideration of multiple components of emotions in human-technology interaction. In Affect and Emotion in Human-Computer Interaction: From Theory to Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 51–62. [Google Scholar]
- Desmet, P.M.A. Faces of Product Pleasure: 25 Positive Emotions in Human-Product Interactions. Int. J. Des. 2012, 6, 1–29. [Google Scholar]
- Saariluoma, P.; Jokinen, J.P.P. Emotional Dimensions of User Experience: A User Psychological Analysis. Int. J. Hum. Comput. Interact. 2014, 30, 303–320. [Google Scholar] [CrossRef]
- Goulart, C.; Valadão, C.; Delisle-Rodriguez, D.; Caldeira, E.; Bastos, T. Emotion analysis in children through facial emissivity of infrared thermal imaging. PLoS ONE 2019, 14, e0212928. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, B.; Olague, G.; Hammoud, R.; Trujillo, L.; Romero, E. Visual learning of texture descriptors for facial expression recognition in thermal imagery. Comput. Vis. Image Underst. 2007, 106, 258–269. [Google Scholar] [CrossRef]
- Al Qudah, M.; Mohamed, A.; Lutfi, S. Analysis of Facial Occlusion Challenge in Thermal Images for Human Affective State Recognition. Sensors 2023, 23, 3513. [Google Scholar] [CrossRef]
- Tashakori, M.; Nahvi, A.; Kiashari, S.E.H. Driver drowsiness detection using facial thermal imaging in a driving simulator. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 2022, 236, 43–55. [Google Scholar] [CrossRef]
- Kosonogov, V.; De Zorzi, L.; Honore, J.; Martinez-Velazquez, E.S.; Nandrino, J.L.; Martinez-Selva, J.M.; Sequeira, H. Facial thermal variations: A new marker of emotional arousal. PLoS ONE 2017, 12, e0183592. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ward, R.D.; Ingleby, M. Toward Use of Facial Thermal Features in Dynamic Assessment of Affect and Arousal Level. IEEE Trans. Affect. Comput. 2017, 8, 412–425. [Google Scholar] [CrossRef]
- Nhan, B.R.; Chau, T. Classifying affective states using thermal infrared imaging of the human face. IEEE Trans. Biomed. Eng. 2009, 57, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Puri, C.; Olson, L.; Pavlidis, I.; Levine, J.; Starren, J. StressCam: Non-contact measurement of users’ emotional states through thermal imaging. In Proceedings of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1725–1728. [Google Scholar]
- Nakanishi, R.; Imai-Matsumura, K. Facial skin temperature decreases in infants with joyful expression. Infant Behav. Dev. 2008, 31, 137–144. [Google Scholar] [CrossRef]
Paths to Target | Paths to Non-Target | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Good IAs | 0.42 | 0.09 | 0.21 | 0.07 |
Poor IAs | 0.19 | 0.09 | 0.18 | 0.06 |
Valence | Arousal | |||
---|---|---|---|---|
M | SD | M | SD | |
U+A+ | 4.74 | 0.62 | 3.41 | 1.00 |
U+A− | 4.04 | 0.89 | 3.68 | 1.07 |
U−A+ | 2.52 | 1.04 | 3.22 | 1.01 |
U−A− | 2.09 | 0.86 | 3.81 | 1.38 |
Top 15 Features for P-Base | Top 15 Features for N-Base | Top 15 Features for P-N |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Emotional Experiences | |||
---|---|---|---|
P-Base | N-Base | P-N | |
S1, S2, S3, S4, S5 and S7 | 0.7778 | 0.7500 | 0.5000 |
S8, S9, S10, S11, S12 and S13 | 0.7895 | 0.7500 | 0.6316 |
S14, S15, S16, S17, S18 and S19 | 0.8333 | 0.8621 | 0.5385 |
S20, S21, S22, S23 and S24 | 0.7222 | 0.7167 | 0.5185 |
Mean accuracy | 0.7807 | 0.7697 | 0.5472 |
Emotional Experiences | |||
---|---|---|---|
P-Base | N-Base | P-N | |
S1, S2, S3, S4, S5 and S7 | 0.7784 | 0.7499 | 0.4905 |
S8, S9, S10, S11, S12 and S13 | 0.7896 | 0.7333 | 0.6311 |
S14, S15, S16, S17, S18 and S19 | 0.8329 | 0.8601 | 0.3769 |
S20, S21, S22, S23 and S24 | 0.7134 | 0.7128 | 0.3794 |
Mean | 0.7786 | 0.7640 | 0.4694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Tang, W.; Yang, H.; Xue, C. Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging. Sensors 2023, 23, 7991. https://doi.org/10.3390/s23187991
Li L, Tang W, Yang H, Xue C. Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging. Sensors. 2023; 23(18):7991. https://doi.org/10.3390/s23187991
Chicago/Turabian StyleLi, Lanxin, Wenzhe Tang, Han Yang, and Chengqi Xue. 2023. "Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging" Sensors 23, no. 18: 7991. https://doi.org/10.3390/s23187991
APA StyleLi, L., Tang, W., Yang, H., & Xue, C. (2023). Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging. Sensors, 23(18), 7991. https://doi.org/10.3390/s23187991