A High-Performance UVA Photodetector Based on Polycrystalline Perovskite MAPbCl3/TiO2 Nanorods Heterojunctions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2 One-Dimensional Nanorods Array Film on FTO
2.2. Preparation of TiO2 Nanorods/MAPbCl3 Heterojunction on FTO
2.3. Material Characterization and Device Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, H.L.; Kong, X.Z.; Liu, Z.R.; Liu, C.X.; Zhou, J.R.; Chen, W.Y.; Ruan, S.P.; Xu, Q. TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett. 2007, 90, 3. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.F.; Lv, K.B.; Chen, W.Y.; Zhou, J.R.; Shen, L.; Ruan, S.P. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction. Opt. Express 2012, 20, 5936–5941. [Google Scholar] [CrossRef]
- Gu, X.H.; Zhang, M.; Meng, F.X.; Zhang, X.D.; Chen, Y.; Ruan, S.P. Influences of different interdigital spacing on the performance of UV photodetectors based on ZnO nanofibers. Appl. Surf. Sci. 2014, 307, 20–23. [Google Scholar] [CrossRef]
- Lee, C.T.; Lin, T.S. ZnO-Based Solar Blind Ultraviolet-C Photodetectors Using SiZnO Absorption Layer. IEEE Photonics Technol. Lett. 2015, 27, 864–866. [Google Scholar]
- Zhang, H.F.; Ruan, S.P.; Xie, T.J.; Feng, C.H.; Qu, P.F.; Chen, W.Y.; Dong, W. Zr0.27Ti0.73O2-Based MSM Ultraviolet Detectors with Pt Electrodes. IEEE Electron. Device Lett. 2011, 32, 653–655. [Google Scholar] [CrossRef]
- Wang, W.L.; Zheng, Y.L.; Li, X.C.; Li, Y.; Huang, L.G.; Li, G.Q. High-performance nonpolar a-plane GaN-based metal-semiconductor-metal UV photo-detectors fabricated on LaAlO3 substrates. J. Mater. Chem. C 2018, 6, 3417–3426. [Google Scholar] [CrossRef]
- Cui, S.J.; Mei, Z.X.; Zhang, Y.H.; Liang, H.L.; Du, X.L. Room-Temperature Fabricated Amorphous Ga2O3 High-Response-Speed Solar-Blind Photodetector on Rigid and Flexible Substrates. Adv. Opt. Mater. 2017, 5, 1700454. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.Y.; Jiang, Y.R.; Tang, Y.; Zou, B.S. Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1−x quantum dots as the active layer. Nanotechnology 2017, 28, 505501. [Google Scholar] [CrossRef]
- Xu, R.L.; Ruan, S.P.; Zhang, D.Z.; Li, Z.Q.; Yin, B.; Li, K.Z.; Zhou, J.R.; Chen, Y.; Li, C.N. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region. J. Alloys Compd. 2018, 751, 117–123. [Google Scholar] [CrossRef]
- Jia, J.; Jeon, S.; Jeon, J.; Xu, J.; Song, Y.J.; Cho, J.H.; Lee, B.H.; Song, J.D.; Kim, H.J.; Hwang, E.; et al. Generalized Scheme for High Performing Photodetectors with a p-Type 2D Channel Layer and n-Type Nanoparticles. Small 2018, 14, 1703065. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Z.; Yang, W.; Chen, H.Y.; Zheng, L.X.; Hu, M.X.; Li, Y.M.; Fang, X.S. Efficiency enhancement of TiO2 self-powered UV photodetectors using a transparent Ag nanowire electrode. J. Mater. Chem. C 2018, 6, 3334–3340. [Google Scholar] [CrossRef]
- Zheng, Q.H.; Huang, J.; Han, C.X.; Chen, Y.Q. Self-Powered UV-B Photodetector Based on Hybrid Al:MgZnO/PEDOT:PSS Schottky Diode. IEEE Electron. Device Lett. 2017, 38, 79–82. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, H.Q.; Qiu, Y.; Luo, Y.M.; Zhao, Y.; Hu, L.Z. The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination. Nanoscale 2017, 9, 17199–17206. [Google Scholar] [CrossRef]
- Zhang, H.J.; Abdiryim, T.; Jamal, R.; Li, J.X.; Liu, H.L.; Kadir, A.; Zou, D.N.; Che, Y.Z.; Serkjan, N. Self-powered TiO2 NRs UV photodetectors: Heterojunction with PTTh and enhanced responsivity by Au nanoparticles. J. Alloys Compd. 2022, 899, 163279. [Google Scholar] [CrossRef]
- Xia, W.W.; Qian, H.Y.; Zeng, X.H.; Sun, J.W.; Wang, P.D.; Luo, M.; Dong, J. TiO2@Sn3O4 nanorods vertically aligned on carbon fiber papers for enhanced photoelectrochemical performance. RSC Adv. 2019, 9, 23334–23342. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, G.X.; Zhang, J.J.; Sang, D.D.; Li, Y.K.; Gao, S.Y. Fabrication of ZnO nanorods/CdS quantum dots and its detection performance in UV-Visible waveband. Chin. Opt. 2019, 12, 1271–1278. [Google Scholar] [CrossRef]
- Baghchesara, M.A.; Yousefi, R.; Cheraghizade, M.; Jamali-Sheini, F.; Saaedi, A. Photocurrent application of Zn-doped CdS nanostructures grown by thermal evaporation method. Ceram. Int. 2016, 42, 1891–1896. [Google Scholar] [CrossRef]
- Li, H.O.; Li, Y.; Xiao, G.L.; Gao, X.; Li, Q.; Chen, Y.H.; Fu, T.; Sun, T.Y.; Zhang, F.B.; Yu, N.S. Simple fabrication ZnO/beta-Ga2O3 core/shell nanorod arrays and their photoresponse properties. Opt. Mater. Express 2018, 8, 794–803. [Google Scholar] [CrossRef]
- Huang, L.J.; Tian, H.P.; Zhou, J.; Ji, Y.F. Design Low Crosstalk Ring-Slot Array Structure for Label-Free Multiplexed Sensing. Sensors 2014, 14, 15658–15668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.C.; Zhao, D.; Min, T.; Wang, J.; Chen, G.Q.; Wang, H.X. Photovoltaic Three-Dimensional Diamond UV Photodetector with Low Dark Current and Fast Response Speed Fabricated by Bottom-Up Method. IEEE Electron. Device Lett. 2019, 40, 1186–1189. [Google Scholar] [CrossRef]
- Karaagac, H.; Aygun, L.E.; Parlak, M.; Ghaffari, M.; Biyikli, N.; Okyay, A.K. Au/TiO2 nanorod-based Schottky-type UV photodetectors. Phys. Status Solidi-Rapid Res. Lett. 2012, 6, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Zhang, Y.X.; Yang, Z.; Feng, J.S.; Xu, Z.; Li, Q.X.; Hu, M.X.; Ye, H.C.; Zhang, X.; Liu, M.; et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 2019, 22, 67–75. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Maculan, G.; Sheikh, A.D.; Abdelhady, A.L.; Saidaminov, M.I.; Hague, M.A.; Murali, B.; Alarousu, E.; Mohammed, O.F.; Wu, T.; Bakr, O.M. CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. J. Phys. Chem. Lett. 2015, 6, 3781–3786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Yan, Q.F. Progress in organic-inorganic hybrid halide perovskite single crystal: Growth techniques and applications. Sci. China Mater. 2017, 60, 1063–1078. [Google Scholar] [CrossRef] [Green Version]
- Parandin, F.; Heidari, F.; Aslinezhad, M.; Parandin, M.M.; Roshani, S.; Roshani, S. Design of 2D photonic crystal biosensor to detect blood components. Opt. Quantum Electron. 2022, 54, 618. [Google Scholar] [CrossRef]
- Wang, X.D.; Li, W.G.; Liao, J.F.; Kuang, D.B. Recent Advances in Halide Perovskite Single-Crystal Thin Films: Fabrication Methods and Optoelectronic Applications. Solar RRL 2019, 3, 1800294. [Google Scholar] [CrossRef]
- Yang, J.L.; Liu, K.W.; Cheng, Z.; Jing, P.T.; Ai, Q.; Chen, X.; Li, B.H.; Zhang, Z.Z.; Zhang, L.G.; Zhao, H.F.; et al. Investigation of Interface Effect on the Performance of CH3NH3PbCl3/ZnO UV Photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 34744–34750. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiao, S.J.; Lu, H.L.; Nie, Y.Y.; Gao, S.Y.; Wang, D.B.; Wang, J.Z.; Zhao, L.C. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector. J. Alloys Compd. 2022, 890, 161827. [Google Scholar] [CrossRef]
- Zhang, H.F.; Li, H.L.; Zhang, M.; Feng, C.H.; Gu, X.H.; Xu, Y.; Zhou, J.R.; Ruan, S.P. Photovoltaic ultraviolet detectors based on Zr0.04Ti0.96O2 solid solution nanowire arrays. Appl. Opt. 2013, 52, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Baikie, T.; Barrow, N.S.; Fang, Y.A.; Keenan, P.J.; Slater, P.R.; Piltz, R.O.; Gutmann, M.; Mhaisalkar, S.G.; White, T.J. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl). J. Mater. Chem. A 2015, 3, 9298–9307. [Google Scholar] [CrossRef]
- Kong, X.Z.; Liu, C.X.; Dong, W.; Zhang, X.D.; Tao, C.; Shen, L.; Zhou, J.R.; Fei, Y.F.; Ruan, S.P. Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. Appl. Phys. Lett. 2009, 94, 123502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Feng, C.H.; Liu, C.X.; Xie, T.J.; Zhou, J.R.; Ruan, S.P. ZrxTi1-xO2-Based Ultraviolet Detectors Series. IEEE Electron. Device Lett. 2011, 32, 934–936. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, Y.F.; Li, K.Z.; Zhou, J.R.; Liu, C.X.; Zhang, M.; Ruan, S.P. UV detector based on an FTO/TiO2/MoO3 heterojunction with a potential well trapping electrons in the dark. Nanotechnology 2019, 30, 465501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Ruan, S.P.; Feng, C.H.; Xu, B.K.; Chen, W.Y.; Dong, W. Photoelectric Properties of TiO2-ZrO2 Thin Films Prepared by Sol-Gel Method. J. Nanosci. Nanotechnol. 2011, 11, 10003–10006. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.B.; Zhang, M.; Liu, C.X.; Liu, G.H.; Li, H.C.; Wen, S.P.; Chen, Y.; Ruan, S.P. TiO2 ultraviolet detector based on LaAlO3 substrate with low dark current. J. Alloys Compd. 2013, 580, 614–617. [Google Scholar] [CrossRef]
- Jung, H.R.; Cho, Y.; Jo, W. UV and Visible Photodetectors of MAPbBr3 and MAPbCl3 Perovskite Single Crystals via Single Photocarrier Transport Design. Adv. Opt. Mater. 2022, 10, 2102175. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.L.; Shen, L. Recent research process on perovskite photodetectors: A review for photodetector—Materials, physics, and applications. Chin. Phys. B 2018, 27, 127806. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Liu, C.Y.; Li, K.Z.; Ruan, S.P.; Zhou, J.R.; Zhang, X.D.; Chen, Y. Modulated charge transport characteristics in solution-processed UV photodetector by incorporating localized built-in electric field. J. Alloys Compd. 2019, 774, 887–895. [Google Scholar] [CrossRef]
- Liu, X.; Gu, L.L.; Zhang, Q.P.; Wu, J.Y.; Long, Y.Z.; Fan, Z.Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Z.; Yin, L.; Cheng, R.; Wang, J.; Wen, Y.; Shifa, T.A.; Wang, F.; Zhang, Y.; Zhan, X.; et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Li, X.X.; Zhao, F.Z.; Wang, C.; Zhang, M.L.; He, S.L.; Zhang, Y.Q.; Zhang, D.Y.; Xu, M.; Zhang, L.C. Self-powered heterojunction photodetector based on thermal evaporated p-Cul and hydrothermal synthesised n-TiO2 nanorods. Opt. Mater. Express 2022, 12, 392–402. [Google Scholar] [CrossRef]
- Ouyang, W.X.; Teng, F.; Fang, X.S. High Performance BiOCl Nanosheets/TiO2 Nanotube Arrays Heterojunction UV Photodetector: The Influences of Self-Induced Inner Electric Fields in the BiOCl Nanosheets. Adv. Funct. Mater. 2018, 28, 1707178. [Google Scholar] [CrossRef]
- Ezhilmaran, B.; Dhanasekar, M.; Bhat, S.V. Solution processed transparent anatase TiO2 nanoparticles/MoO3 nanostructures heterojunction: High performance self-powered UV detector for low-power and low-light applications. Nanoscale Adv. 2021, 3, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
Materials | Fabrication Technique | Dark Current (μA) | Λ (nm) | Responsivity (A/W) | Detectivity* (Jones) | Rise Time (s) | Fall Time (s) | Ref |
---|---|---|---|---|---|---|---|---|
TiO2/CuI | nanorods array | 4.10 × 10−4 A at 0 V | 410 | 4.5 × 10−3 | 1.08 × 1011 | 0.33 | 0.22 | [42] |
TiO2/3-BiOCl | nanotube | 7.49 × 10−3 A at −5 V | 350 | 7.92 | 1.42 × 1013 | 17.3 | 1.68 | [43] |
TiO2/MoO3 | Sol-gel method | 2.856 at −1 V | 352 | 108 × 10−3 | 2.26 × 1010 | 1.82 | 1.42 | [44] |
Ga2O3/MAPbCl3 | amorphous | 6.8 at −1.5 V | 398 | 4.96 × 10−3 | 5.4 × 1010 | 3.21 | 0.067 | [29] |
TiO2/MAPbCl3 | nanorods array | 2.69 × 10−4 at −2 V | 360 | 17.25 | 9.2094 × 1011 | 0.48 | 2.93 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhai, Y.; Zhang, H.; Wang, Z.; Zhang, Y.; Xu, R.; Ruan, S.; Zhou, J. A High-Performance UVA Photodetector Based on Polycrystalline Perovskite MAPbCl3/TiO2 Nanorods Heterojunctions. Sensors 2023, 23, 6726. https://doi.org/10.3390/s23156726
Zhang Y, Zhai Y, Zhang H, Wang Z, Zhang Y, Xu R, Ruan S, Zhou J. A High-Performance UVA Photodetector Based on Polycrystalline Perovskite MAPbCl3/TiO2 Nanorods Heterojunctions. Sensors. 2023; 23(15):6726. https://doi.org/10.3390/s23156726
Chicago/Turabian StyleZhang, Yupeng, Yannan Zhai, Hui Zhang, Zhaoxin Wang, Yongfeng Zhang, Ruiliang Xu, Shengping Ruan, and Jingran Zhou. 2023. "A High-Performance UVA Photodetector Based on Polycrystalline Perovskite MAPbCl3/TiO2 Nanorods Heterojunctions" Sensors 23, no. 15: 6726. https://doi.org/10.3390/s23156726
APA StyleZhang, Y., Zhai, Y., Zhang, H., Wang, Z., Zhang, Y., Xu, R., Ruan, S., & Zhou, J. (2023). A High-Performance UVA Photodetector Based on Polycrystalline Perovskite MAPbCl3/TiO2 Nanorods Heterojunctions. Sensors, 23(15), 6726. https://doi.org/10.3390/s23156726