Inspection of Enamel Removal Using Infrared Thermal Imaging and Machine Learning Techniques
Abstract
:1. Introduction
2. Summary of Key Joining Techniques and Machine Learning Technologies for Process Inspection
2.1. Thermal or Hot Crimping
2.2. Ultrasonic Crimping
2.3. Welding
2.4. Soldering
2.5. Lack of Process Inspection Methods for Enamel Removal Processes
3. Materials and Methods
3.1. Infrared Thermal Imaging for Inspection of Enamel Removal
3.2. Experimental Setup and Process
4. Results and Discussion
4.1. Thermographic Signal Reconstruction (TSR)
4.2. Classification Models
4.2.1. K-Means Clustering Algorithm
4.2.2. Gaussian Mixture Model with Expectation Maximisation (GMM-EM)
4.2.3. Support Vector Machines (SVM)
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, D.; Farnsworth, M.; Zhang, Z.; Jewell, G.W.; Tiwari, A. In-process monitoring in electrical machine manufacturing: A review of state of the art and future directions. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 2035–2051. [Google Scholar] [CrossRef]
- Roßkopf, A.; Bär, E.; Joffe, C. Influence of inner skin-and proximity effects on conduction in litz wires. IEEE Trans. Power Electron. 2013, 29, 5454–5461. [Google Scholar] [CrossRef]
- Seefried, J.; Riedel, A.; Kuehl, A.; Franke, J. Challenges and Solutions for Contacting Insulated Litz Wire Structures in the Context of Electromechanical Engineering. In Production at the Leading Edge of Technology, Proceedings of the 11th Congress of the German Academic Association for Production Technology (WGP), 28 September–1 October 2021; Springer International Publishing: Cham, Switzerland, 2022; pp. 466–475. [Google Scholar] [CrossRef]
- Kuehl, A.; Zitzelsberger, M.; Seefried, J.; Masuch, M.; Miller, T.; Franke, J. Hot crimping through innovative inductive heating in the production of electric motors. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; pp. 1404–1409. [Google Scholar] [CrossRef]
- Spreng, S.; Gläßel, T.; Franke, J. Adaption of the ultrasonic welding technique to the process of joining insulated copper wires with standardized tubular cable lugs. In Proceedings of the 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm), San Diego, CA, USA, 11–14 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 147–153. [Google Scholar] [CrossRef]
- Mayr, A.; Weigelt, M.; Masuch, M.; Meiners, M.; Hüttel, F.; Franke, J. Application scenarios of artificial intelligence in electric drives production. Procedia Manuf. 2018, 24, 40–47. [Google Scholar] [CrossRef]
- Meiners, M.; Mayr, A.; Kuhn, M.; Raab, B.; Franke, J. Towards an inline quality monitoring for crimping processes utilizing machine learning techniques. In Proceedings of the 2020 10th International Electric Drives Production Conference (EDPC), Ludwigsburg, Germany, 8–9 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Farnsworth, M.; Tiwari, D.; Zhang, Z.; Jewell, G.W.; Tiwari, A. Augmented classification for electrical coil winding defects. Int. J. Adv. Manuf. Technol. 2022, 119, 6949–6965. [Google Scholar] [CrossRef]
- Spreng, S.; Gläßel, T.; Hoetzel, S.; Schaefer, H.; Wunder, D.; Franke, J. Evaluation of the influence of varying electrode materials within the thermo-crimping process. In Proceedings of the 2015 5th international electric drives production conference (EDPC), Nuremberg, Germany, 15–16 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Fleischmann, H.; Spreng, S.; Kohl, J.; Kißkalt, D.; Franke, J. Distributed condition monitoring systems in electric drives manufacturing. In Proceedings of the 2016 6th international electric drives production conference (EDPC), Nuremberg, Germany, 30 November–1 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 52–57. [Google Scholar] [CrossRef]
- Spreng, S.; Glaessel, T.; Muselmann, J.; Worrlein, M.; Franke, J. Quantification of the influence of varying electrode shapes and materials on the thermo-crimping process of standardized tubular cable lugs. In Proceedings of the 2016 6th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 November–1 December 2016; pp. 48–51. [Google Scholar] [CrossRef]
- Wire Crimp Connectors Verification using Ultrasonic Inspection, NTRS—NASA Technical Reports Server. Available online: https://ntrs.nasa.gov/citations/20080013394 (accessed on 27 February 2023).
- Seefried, J.; Gläßel, T.; Zürn, M.; Franke, J. Evaluation of monitoring approaches for the ultrasonic crimping process of tubular cable lugs. In Proceedings of the 2017 7th International Electric Drives Production Conference (EDPC), Würzburg, Germany, 5–6 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mayr, A.; Kißkalt, D.; Meiners, M.; Lutz, B.; Schäfer, F.; Seidel, R.; Selmaier, A.; Fuchs, J.; Metzner, M.; Blank, A.; et al. Machine Learning in Production—Potentials, challenges and exemplary applications. Procedia CIRP 2019, 86, 49–54. [Google Scholar] [CrossRef]
- Mayr, A.; Meyer, A.; Seefried, J.; Weigelt, M.; Lutz, B.; Sultani, D.; Hampl, M.; Franke, J. Potentials of machine learning in electric drives production using the example of contacting processes and selective magnet assembly. In Proceedings of the 2017 7th International Electric Drives Production Conference (EDPC), Würzburg, Germany, 5–6 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar] [CrossRef]
- ISO10042; Welding—Arc-Welded Joints in Aluminium and Its Alloys—Quality Levels for Imperfections. International Standards Organisation: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/70566.html (accessed on 27 February 2023).
- Pan, Q.; Mizutani, M.; Kawahito, Y.; Katayama, S. High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates. J. Laser Appl. 2016, 28, 012004. [Google Scholar] [CrossRef]
- Gambrill, N.; Farnsworth, M.; Shaw, R.; Tedeschi, S.; Tiwari, D.; Tiwari, A. Narrow gap TIG arc weld process monitoring. In Proceedings of the 2022 27th International Conference on Automation and Computing (ICAC), Bristol, UK, 1–3 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Mayr, A.; Lutz, B.; Weigelt, M.; Gläßel, T.; Kißkalt, D.; Masuch, M.; Riedel, A.; Franke, J. Evaluation of machine learning for quality monitoring of laser welding using the example of the contacting of hairpin windings. In Proceedings of the 2018 8th International Electric Drives Production Conference (EDPC), Schweinfurt, Germany, 4–5 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Sumesh, A.; Rameshkumar, K.; Mohandas, K.; Babu, R.S. Use of machine learning algorithms for weld quality monitoring using acoustic signature. Procedia Comput. Sci. 2015, 50, 316–322. [Google Scholar] [CrossRef] [Green Version]
- BS EN 50390:2004; British Standard on Space Product Assurance. The Manual Soldering of High-Reliability Electrical Connections. British Standards Institution: London, UK, 2004. Available online: https://www.bsigroup.com (accessed on 27 February 2023).
- Chen, I.C.; Hwang, R.C.; Huang, H.C. PCB Defect Detection Based on Deep Learning Algorithm. Processes 2023, 11, 775. [Google Scholar] [CrossRef]
- Wu, Z. Study on intelligent identification technology of solder joints defects based on LMBP neural network. In Proceedings of the 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, Shanghai, China, 8–11 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Cai, N.; Cen, G.; Wu, J.; Li, F.; Wang, H.; Chen, X. SMT solder joint inspection via a novel cascaded convolutional neural network. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 670–677. [Google Scholar] [CrossRef]
- Glaessel, T.; Seefried, J.; Kuehl, A.; Franke, J. Skinning of Insulated Copper Wires within the Production Chain of Hairpin Windings for Electric Traction Drives. Int. J. Mech. Eng. Robot. Res. 2020, 9, 163–169. [Google Scholar] [CrossRef]
- Ranjit, S.; Chung, Y.; Kim, W. Thermal behavior variations in coating thickness using pulse phase thermography. J. Korean Soc. Nondestruct. Test. 2016, 36, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Liu, J.; Dai, J.; Yu, Z. Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology. Appl. Therm. Eng. 2017, 114, 770–775. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography—Part II: Experimental investigation. Infrared Phys. Technol. 2018, 92, 24–29. [Google Scholar] [CrossRef]
- Zhou, J.; Du, W.; Yang, L.; Deng, K.; Addepalli, S.; Zhao, Y. Pattern recognition of barely visible impact damage in carbon composites using pulsed thermography. IEEE Trans. Ind. Inform. 2021, 18, 7252–7261. [Google Scholar] [CrossRef]
- Scikit Learn: Machine Learning in Python. Scikit-Learn: Machine Learning in Python—Scikit-Learn 1.2.1 Documentation. Available online: https://scikit-learn.org/stable/ (accessed on 27 February 2023).
- Kumar, M.; Bhandari, A.K. No-Reference Metric Optimization-Based Perceptually Invisible Image Enhancement. IEEE Trans. Instrum. Meas. 2021, 71, 1–10. [Google Scholar] [CrossRef]
- Shepard, S.M.; Lhota, J.R.; Rubadeux, B.A.; Wang, D.; Ahmed, T. Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 2003, 42, 1337–1342. [Google Scholar] [CrossRef]
- Holland, S.D. Thermographic signal reconstruction for vibrothermography. Infrared Phys. Technol. 2011, 54, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. In Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), Fort Collins, CO, USA, 23–25 June 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2, pp. 246–252. [Google Scholar] [CrossRef]
- OpenCV 2021. Available online: https://opencv.org/ (accessed on 27 February 2023).
- Sarang, P. Gaussian Mixture Model: A Probabilistic Clustering Model for Datasets with Mixture of Gaussian Blobs. In Thinking Data Science: A Data Science Practitioner’s Guide; Springer International Publishing: Cham, Switzerland, 2023; pp. 197–207. [Google Scholar]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Pasting small votes for classification in large databases and on-line. Mach. Learn. 1999, 36, 85. [Google Scholar] [CrossRef] [Green Version]
Two Classes | ||||||
---|---|---|---|---|---|---|
Class | Whole | 1st Derivative | 2nd Derivative | |||
Average Training Accuracy | Average Enamel Accuracy | Average Training Accuracy | Average Enamel Accuracy | Average Training Accuracy | Average Enamel Accuracy | |
GMM | 0.52 | 0.32 | 0.71 | 0.86 | 0.85 | 1.0 |
K-Means | 0.58 | 0.43 | 0.79 | 0.23 | 0.79 | 0.55 |
SVM Linear (Bag) | 0.86 | 0.22 | 0.86 | 0.52 | 0.86 | 0.37 |
SVM Linear (Normal) | 0.86 | 0.72 | 0.86 | 0.42 | 0.86 | 0.65 |
SVC (Bag) | 0.86 | 0.36 | 0.86 | 0.44 | 0.86 | 0.51 |
SVC (Normal) | 0.86 | 0.68 | 0.86 | 0.31 | 0.86 | 0.62 |
Four Classes | ||||||
---|---|---|---|---|---|---|
Class | Whole | 1st Derivative | 2nd Derivative | |||
Average Training Accuracy | Average Enamel Accuracy | Average Training Accuracy | Average Enamel Accuracy | Average Training Accuracy | Average Enamel Accuracy | |
GMM | 0.41 | 0.26 | 0.51 | 0.41 | 0.39 | 0.24 |
K-Means | 0.47 | 0.22 | 0.52 | 0.24 | 0.52 | 0.64 |
SVM Linear (Bag) | 0.82 | 0.43 | 0.82 | 0.40 | 0.82 | 0.64 |
SVM Linear (Normal) | 0.82 | 0.42 | 0.82 | 0.40 | 0.82 | 0.63 |
SVC (Bag) | 0.74 | 0.40 | 0.59 | 0.19 | 0.82 | 0.83 |
SVC (Normal) | 0.82 | 0.25 | 0.82 | 0.17 | 0.82 | 0.47 |
Average Model Evaluation Time (s) | |
---|---|
K-Means | 4.27 |
SVM Linear | 3.71 |
SVM SVC | 134.47 |
OpenCV GMM | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, D.; Miller, D.; Farnsworth, M.; Lambourne, A.; Jewell, G.W.; Tiwari, A. Inspection of Enamel Removal Using Infrared Thermal Imaging and Machine Learning Techniques. Sensors 2023, 23, 3977. https://doi.org/10.3390/s23083977
Tiwari D, Miller D, Farnsworth M, Lambourne A, Jewell GW, Tiwari A. Inspection of Enamel Removal Using Infrared Thermal Imaging and Machine Learning Techniques. Sensors. 2023; 23(8):3977. https://doi.org/10.3390/s23083977
Chicago/Turabian StyleTiwari, Divya, David Miller, Michael Farnsworth, Alexis Lambourne, Geraint W. Jewell, and Ashutosh Tiwari. 2023. "Inspection of Enamel Removal Using Infrared Thermal Imaging and Machine Learning Techniques" Sensors 23, no. 8: 3977. https://doi.org/10.3390/s23083977
APA StyleTiwari, D., Miller, D., Farnsworth, M., Lambourne, A., Jewell, G. W., & Tiwari, A. (2023). Inspection of Enamel Removal Using Infrared Thermal Imaging and Machine Learning Techniques. Sensors, 23(8), 3977. https://doi.org/10.3390/s23083977