Editorial for the Special Issue on Electronics for Sensors II
References
- Falconi, C.; Martinelli, E.; Di Natale, C.; D’Amico, A.; Maloberti, F.; Malcovati, P.; Baschirotto, A.; Stornelli, V.; Ferri, G. Electronic Interfaces. Sens. Actuators B Chem. 2007, 121, 295–329. [Google Scholar] [CrossRef]
- Baschirotto, A.; Capone, S.; D’Amico, S.; Di Natale, C.; Ferragina, V.; Ferri, G.; Francioso, L.; Grassi, M.; Guerrini, N.; Malcovati, P.; et al. A portable integrated wide-range gas sensing system with smart A/D front-end. Sens. Actuators B 2008, 130, 164–174. [Google Scholar] [CrossRef]
- Wilson, D.M. Electronic Interface Circuits for Resistance-Based Sensors. IEEE Sens. J. 2022, 22, 10223–10234. [Google Scholar] [CrossRef]
- Somappa, L.; Malik, S.; Aeron, S.; Sonkusale, S.; Baghini, M.S. High Resolution Frequency Measurement Techniques for Relaxation Oscillator Based Capacitive Sensors. IEEE Sens. J. 2021, 21, 13394–13404. [Google Scholar] [CrossRef]
- Ferri, G.; Pennisi, S. A 1.5-V current-mode capacitance multiplier. In Proceedings of the Tenth ICM (International Conference on Microelectronics—Cat. No.98EX186), Monastir, Tunisia, 16 December 1998; pp. 9–12. [Google Scholar] [CrossRef]
- Lee, Y.C.; Hoang, V.A. Battery-Free and Real-Time Wireless Sensor System on Marine Propulsion Shaft Using a Wireless Power Transfer Module. Sensors 2023, 23, 558. [Google Scholar] [CrossRef]
- Reda, K.; Yan, Y. Vibration Measurement of an Unbalanced Metallic Shaft Using Electrostatic Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 1467–1476. [Google Scholar] [CrossRef]
- Xia, Q.; Yan, L. Application of Wireless Power Transfer Technologies and Intermittent Energy Harvesting for Wireless Sensors in Rotating Machines. Wirel. Power Transf. 2016, 3, 93–104. [Google Scholar] [CrossRef]
- Leoni, A.; Ulisse, I.; Pantoli, L.; Errico, V.; Ricci, M.; Orengo, G.; Giannini, F.; Saggio, G. Energy Harvesting Optimization for Built-in Power Replacement of Electronic Multisensory Architecture. AEU—Int. J. Electron. Commun. 2019, 107, 170–176. [Google Scholar] [CrossRef]
- Ragnoli, M.; Barile, G.; Leoni, A.; Ferri, G.; Stornelli, V. An Autonomous Low-Power LoRa-Based Flood-Monitoring System. J. Low Power Electron. Appl. 2020, 10, 15. [Google Scholar] [CrossRef]
- Fusacchia, P.; Muttillo, M.; Leoni, A.; Pantoli, L.; Parente, F.R.; Stornelli, V.; Ferri, G. A Low Cost Fully Integrable in a Standard CMOS Technology Portable System for the Assessment of Wind Conditions. Procedia Eng. 2016, 168, 1024–1027. [Google Scholar] [CrossRef]
- Qin, C.; Huang, Z.; Liu, Y.; Li, J.; Lin, L.; Tan, N.; Yu, X. An Energy-Efficient BJT-Based Temperature Sensor with ±0.8 °C (3σ) Inaccuracy from −50 to 150 °C. Sensors 2022, 22, 9381. [Google Scholar] [CrossRef]
- Souri, K.; Souri, K.; Makinwa, K. A 40 µW CMOS Temperature Sensor with an Inaccuracy of ±0.4 °C (3σ) from −55 °C to 200 °C. In Proceedings of the ESSCIRC (ESSCIRC), Bucharest, Romania, 16–20 September 2013; pp. 221–224. [Google Scholar] [CrossRef]
- Yousefzadeh, B.; Makinwa, K.A.A. A BJT-Based Temperature-to-Digital Converter with a ±0.25 °C 3 σ—Inaccuracy from −40 °C to +180 °C Using Heater-Assisted Voltage Calibration. IEEE J. Solid-State Circuits 2020, 55, 369–377. [Google Scholar] [CrossRef]
- Markus, J.; Silva, J.; Temes, G.C. Theory and Applications of Incremental /Spl Delta//Spl Sigma/ Converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 678–690. [Google Scholar] [CrossRef]
- Riem, R.; Raman, J.; Rombouts, P. A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning. Sensors 2022, 22, 6069. [Google Scholar] [CrossRef]
- Jiang, J.; Makinwa, K.A.A. Multipath Wide-Bandwidth CMOS Magnetic Sensors. IEEE J. Solid-State Circuits 2017, 52, 198–209. [Google Scholar] [CrossRef]
- Baltes, H.P.; Popovic, R.S. Integrated Semiconductor Magnetic Field Sensors. Proc. IEEE 1986, 74, 1107–1132. [Google Scholar] [CrossRef]
- Munter, P.J.A. A Low-Offset Spinning-Current Hall Plate. Sens. Actuators A Phys. 1990, 22, 743–746. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Rossi, M.C.; Salvatori, S. Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors 2022, 22, 5360. [Google Scholar] [CrossRef]
- Ruppert, M.G.; Harcombe, D.M.; Ragazzon, M.R.P.; Moheimani, S.O.R.; Fleming, A.J. A Review of Demodulation Techniques for Amplitude-Modulation Atomic Force Microscopy. Beilstein J. Nanotechnol. 2017, 8, 1407–1426. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, G.; Feng, Z. A High Resolution Synchronous Demodulation Method Based on Gated Integrator for Precision Sensors. IEEE Trans. Instrum. Meas. 2022, 71, 9504009. [Google Scholar] [CrossRef]
- Pettinato, S.; Orsini, A.; Girolami, M.; Trucchi, D.M.; Rossi, M.C.; Salvatori, S. A High-Precision Gated Integrator for Repetitive Pulsed Signals Acquisition. Electronics 2019, 8, 1231. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. An Overview on the Second Generation Voltage Conveyor: Features, Design and Applications. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 547–551. [Google Scholar] [CrossRef]
- Barile, G.; Leoni, A.; Pantoli, L.; Safari, L.; Stornelli, V. A New VCII Based Low-Power Low-Voltage Front-End for Silicon Photomultipliers. In Proceedings of the 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 26–29 June 2018; pp. 1–4. [Google Scholar]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G.; Leoni, A. New Current Mode Wheatstone Bridge Topologies with Intrinsic Linearity. In Proceedings of the 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 9–12. [Google Scholar]
- Barile, G.; Safari, L.; Ferri, G.; Stornelli, V. A VCII-Based Stray Insensitive Analog Interface for Differential Capacitance Sensors. Sensors 2019, 19, 3545. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. A New Versatile Full Wave Rectifier Using Voltage Conveyors. AEU—Int. J. Electron. Commun. 2020, 122, 153267. [Google Scholar] [CrossRef]
- Stornelli, V.; Safari, L.; Barile, G.; Ferri, G. A New VCII Based Grounded Positive/Negative Capacitance Multiplier. AEU—Int. J. Electron. Commun. 2021, 137, 153793. [Google Scholar] [CrossRef]
- Bonato, P. Wearable Sensors/Systemsand Their Impact onBiomedical Engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Channa, A.; Popescu, N.; Skibinska, J.; Burget, R. The rise of wearable devices during the COVID-19 pandemic: A systematic review. Sensors 2021, 21, 5787. [Google Scholar] [CrossRef]
- Asiain, D.; Ponce de León, J.; Beltrán, J.R. MsWH: A Multi-Sensory Hardware Platform for Capturing and Analyzing Physiological Emotional Signals. Sensors 2022, 22, 5775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Teoh, J.C.; Wu, J.; Yu, L.; Lim, C.T. Dynamic Zero Current Method to Reduce Measurement Error in Low Value Resistive Sensor Array for Wearable Electronics. Sensors 2023, 23, 1406. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Li, J.; Song, A. Cable crosstalk suppression with two-wire voltage feedback method for resistive sensor array. Sensors 2016, 16, 253. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, R.; Magni, R.; Dario, P. A tactile array sensor layered in an artificial skin. In Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, 5–9 August 1995; Volume 3, pp. 114–119. [Google Scholar]
- Leoni, A.; Esposito, P.; Stornelli, V.; Saggio, G.; Ferri, G. On the use of field programmable gate arrays in light detection and ranging systems. Rev. Sci. Instrum. 2021, 92, 121501. [Google Scholar] [CrossRef]
- Xie, Y.; Majoros, T.; Oniga, S. FPGA-Based Hardware Accelerator on Portable Equipment for EEG Signal Patterns Recognition. Electronics 2022, 11, 2410. [Google Scholar] [CrossRef]
- Esteve Bosch, R.; Rodríguez Ponce, J.; Simón Estévez, A.; Benlloch Rodríguez, J.M.; Herrero Bosch, V.; Toledo Alarcón, J.F. Data Compression in the NEXT-100 Data Acquisition System. Sensors 2022, 22, 5197. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, A.; Yamaguchi, T.; Tanaka, Y.; Ueno, A. FPGA-Based Processor for Continual Capacitive-Coupling Impedance Spectroscopy and Circuit Parameter Estimation. Sensors 2022, 22, 4406. [Google Scholar] [CrossRef]
- Leoni, A.; Ferri, G.; Ursini, D.; Zompanti, A.; Sabatini, A.; Stornelli, V. Towards smart sensor systems for precision farming: Electrode potential energy harvesting from plants’ soil. In Proceedings of the 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 24–26 October 2022. [Google Scholar]
- Sabatini, A.; Leoni, A.; Goncalves, G.; Zompanti, A.; Marchetta, M.V.; Cardoso, P.; Grasso, S.; Di Loreto, M.V.; Lodato, F.; Cenerini, C.; et al. Microsystem nodes for soil monitoring via an energy mapping network: A proof-of-concept preliminary study. Micromachines 2022, 13, 1440. [Google Scholar] [CrossRef] [PubMed]
- Leoni, A.; Ferri, G.; Colaiuda, D.; Stornelli, V. Micro energy harvesting from the soil of indoor living plants. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Bol, Croatia, 5–8 July 2022. [Google Scholar]
- Wang, D.; Li, D.; Fu, L.; Zheng, Y.; Gu, Y.; Chen, F.; Zhao, S. Can Electrochemical Sensors Be Used for Identification and Phylogenetic Studies in Lamiaceae? Sensors 2021, 21, 8216. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, G.; Barile, G.; Leoni, A. Editorial for the Special Issue on Electronics for Sensors II. Sensors 2023, 23, 1640. https://doi.org/10.3390/s23031640
Ferri G, Barile G, Leoni A. Editorial for the Special Issue on Electronics for Sensors II. Sensors. 2023; 23(3):1640. https://doi.org/10.3390/s23031640
Chicago/Turabian StyleFerri, Giuseppe, Gianluca Barile, and Alfiero Leoni. 2023. "Editorial for the Special Issue on Electronics for Sensors II" Sensors 23, no. 3: 1640. https://doi.org/10.3390/s23031640