Fault Detection and Classification of CIGS Thin-Film PV Modules Using an Adaptive Neuro-Fuzzy Inference Scheme
Abstract
:1. Introduction
2. Methodology
3. Collection of Input Datasets
4. Features Extraction Techniques
4.1. Statistical Parameters of IR images
4.2. Mathematical Parameters of IR Images
4.3. Electrical Parameters of I-V Measurements
5. ANFIS Fault Classification Technique
5.1. ANFIS Structure
5.2. Application of ANFIS for Classification of Faults
5.3. Analysis of ANFIS Results
6. Estimation of Operating Power Ratio
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldman, R.; Wu, K.; Margolis, R. Solar Industry Update. NREL/PR-7A40-80427; 2021. Available online: https://www.nrel.gov/docs/fy21osti/80427.pdf (accessed on 12 April 2022).
- Haque, A.; Bharath, K.V.S.; Khan, M.A.; Jaffery, Z.A. Fault diagnosis of photovoltaic modules. Energy Sci. Eng. 2019, 7, 622–644. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, K.; Eltuhamy, R.; Rady, M.; Mahmoud, H. Failure Mode and Effects Analysis of CIGS Thin Film PV Modules Using Thermography Analysis and IV Measurements. Int. J. Energy Convers. (IRECON) 2021, 9, 17–28. [Google Scholar] [CrossRef]
- Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Iseghem, M.V. Review of Failures of Photovoltaic Modules; Report IEA-PVPS T13-01:2014; International Energy Agency: Paris, France, 2014.
- Buerhop, C.; Schlegel, D.; Niess, M.; Vodermayer, C.; Weißmann, R.; Brabec, C. Reliability of IR-imaging of PV-plants under operating conditions. Sol. Energy Mater. Sol. Cells 2012, 107, 154–164. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, S. Fault Analysis of Solar PV Array Based on Infrared Image. Acta Energ. Sol. Sin. 2010, 31, 197–202. [Google Scholar]
- Patel, H.; Agarwal, V. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Trans. Energy Convers. 2008, 23, 302–310. [Google Scholar] [CrossRef]
- Kumar, A.; Pachauri, R.K.; Chauhan, Y.K. Experimental analysis of SP/TCT PV array configurations under partial shading conditions. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Bechouat, M.; Younsi, A.; Sedraoui, M.; Soufi, Y.; Yousfi, L.; Tabet, I.; Touafek, K. Parameters identification of a photovoltaic module in a thermal system using meta-heuristic optimization methods. Int. J. Energy Environ. Eng. 2017, 8, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Lydia, M.; Sindhu, K.; Gugan, K. Analysis on Solar Panel Crack Detection Using Optimization Techniques. J. Nano Electron. Phys. 2017, 9, 02004. [Google Scholar] [CrossRef]
- Titri, S.; Larbes, C.; Toumi, K.Y.; Benatchba, K. A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions. Appl. Soft Comput. 2017, 58, 465–479. [Google Scholar] [CrossRef]
- Natarajan, K.; Pala, P.K.; Sampath, V. Fault Detection of Solar PV system using SVM and Thermal Image Processing. Int. J. Renew. Energy Res. 2020, 10, 967–977. [Google Scholar]
- Madeti, S.R.; Singh, S.N. Modeling of PV system based on experimental data for fault detection using kNN method. Sol. Energy 2018, 173, 139–151. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, J.O. On-Line Diagnosis and Fault State Classification Method of Photovoltaic Plant. Energies 2020, 13, 4584. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Lehman, B.; de Palma, J.-F.; Mosesian, J.; Lyons, R. Decision tree-based fault detection and classification in solar photovoltaic arrays. In Proceedings of the Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 93–99. [Google Scholar] [CrossRef]
- Sun, J.; Sun, F.; Fan, J.; Liang, Y. Fault Diagnosis Model of Photovoltaic Array Based on Least Squares Support Vector Machine in Bayesian Framework. Appl. Sci. 2017, 7, 1199. [Google Scholar] [CrossRef] [Green Version]
- Pierdicca, R.; Malinverni, E.S.; Piccinini, F.; Paolanti, M.; Felicetti, A.; Zingaretti, P. Deep convolutional neural network for automatic detection of damaged photovoltaic cells. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Jaffery, Z.A.; Dubey, A.K.; Irshad; Haque, A. Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging. Infrared Phys. Technol. 2017, 83, 182–187. [Google Scholar] [CrossRef]
- Belaout, A.; Krim, F.; Mellit, A.; Talbi, B.; Arabi, A. Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renew. Energy 2018, 127, 548–558. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Z.; Wu, L.; Lin, P.; Cheng, S. Online Monitoring and Fault Diagnosis of PV Array Based on BP Neural Network Optimized by Genetic Algorithm. Multi-Discip. Trends Artif. Intell. 2015, 9426, 102–112. [Google Scholar] [CrossRef]
- Kurukuru, V.S.B.; Haque, A.; Khan, M.A.; Tripathy, A.K. Fault classification for Photovoltaic Modules Using Thermography and Machine Learning Techniques. In Proceedings of the International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; pp. 1–6. [Google Scholar]
- Dunderdale, C.; Brettenny, W.; Clohessy, C.; Dyk, E.E. Photovoltaic defect classification through thermal infrared imaging using a machine learning approach. Prog. Photovolt. Res. Appl. 2020, 28, 177–188. [Google Scholar] [CrossRef]
- Niazi, K.; Akhtar, W.; Khan, H.A.; Sohaib, S.; Nasir, A.K. Binary Classification of Defective Solar PV Modules Using Thermography. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 753–757. [Google Scholar] [CrossRef] [Green Version]
- Leotta, G.; Pugliatti, P.; Di Stefano, A.; Aleo, F.; Bizzarri, F. Post processing technique for thermographic images provided by drone inspections. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Hamburg, Germany, 14–18 September 2015. [Google Scholar] [CrossRef]
- Rasch, R.; Behrens, G.; Hamelmann, F.; Hantelmann, S.; Dreimann, R.; Weicht, J. Automated Thermal Imaging for Fault Detection on PV-Systems. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Hamburg, Germany, 14–18 September 2015. [Google Scholar] [CrossRef]
- Le, M.; Luong, V.S.; Nguyen, D.K.; Dao, V.-D.; Vu, N.H.; Vu, H.H.T. Remote anomaly detection and classification of solar photovoltaic modules based on deep neural network. Sustain. Energy Technol. Assess. 2021, 48, 101545. [Google Scholar] [CrossRef]
- Fadhel, S.; Delpha, C.; Diallo, D.; Bahri, I.; Migan, A.; Trabelsi, M.; Mimouni, M. PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system. Sol. Energy 2018, 179, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Samara, S.; Natsheh, E. Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems. Sustainability 2020, 12, 2011. [Google Scholar] [CrossRef] [Green Version]
- Ul Haq, A.; Sindi, H.; Gul, S.; Jalal, M. Modeling and Fault Categorization in Thin-Film and Crystalline PV Arrays through Multilayer Neural Network Algorithm. IEEE Access 2020, 8, 102235–102255. [Google Scholar] [CrossRef]
- Aziz, F.; Haq, A.U.; Ahmad, S.; Mahmoud, Y.; Jalal, M.; Ali, U. A Novel Convolutional Neural Network Based Approach for Fault Classification in Photovoltaic Arrays. IEEE Access 2020, 8, 41889–41904. [Google Scholar] [CrossRef]
- Huang, J.M.; Wai, R.J.; Gao, W. Newly Designed Fault Diagnostic Method for Solar Photovoltaic Generation System Based on IV-Curve Measurement. IEEE Access 2019, 7, 70919–70932. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Wu, L.; Lin, P.; Cheng, S.; Lu, P. An Intelligent Fault Diagnosis Approach for PV Array Based on SA-RBF Kernel Extreme Learning Machine. Energy Procedia 2017, 105, 1070–1076. [Google Scholar] [CrossRef]
- Mekki, H.; Mellit, A.; Salhi, H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simul. Model. Pract. Theory 2016, 67, 1–13. [Google Scholar] [CrossRef]
- Bonsignore, L.; Davarifar, M.; Rabhi, A.; Tina, G.M.; Elhajjaji, A. Neuro-Fuzzy Fault Detection Method for Photovoltaic Systems. Energy Procedia 2014, 62, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Lazzaretti, A.E.; Da Costa, C.H.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; De Goes, R.E.; Linhares, R.R.; Stadzisz, P.C.; et al. A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants. Sensors 2020, 20, 4688. [Google Scholar] [CrossRef]
- Hussain, M.; Dhimish, M.; Titarenko, S.; Mather, P. Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters. Renew. Energy 2020, 155, 1272–1292. [Google Scholar] [CrossRef]
- Dhimish, M.; Badran, G. Photovoltaic Hot-Spots Fault Detection Algorithm Using Fuzzy Systems. IEEE Trans. Device Mater. Reliab. 2019, 19, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Eltuhamy, R.A.; Rady, M.; Ibrahim, K.H.; Mahmoud, H.A. Novel features extraction for fault detection using thermography characteristics and IV measurements of CIGS thin-film module. Instrum. Mes. Métrologie 2020, 19, 311–325. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Photovoltaic (PV) Systems—Requirements for Testing, Documentation and Maintenance—Part 3: Photovoltaic Modules and Plants—Outdoor Infrared Thermography; IEC TS 62446-3: 2007; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2017. [Google Scholar]
- Jang, J.S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
Methodology | Reference | Fault Classification | Accuracy of Classification | Remarks |
---|---|---|---|---|
(a) using thermography techniques. | ||||
Texture feature extraction (TFE) and support vector machine (SVM) | [12] | Cracks, hot spots due to shading and soiling. Categorize solar modules into defective and non-defective. | 97% |
|
K-nearest neighbor (KNN | [21] | Categorize solar modules into defective and non-defective. | 80.3% | |
Support vector machine (SVM) | 56.8% | |||
Neural network | 92.8 | |||
Support vector machine (SVM) | [22] | 91.2% | ||
Deep-learning convolutional neural network (CNN) | [22] | 89.5% | ||
n Bayes: a binary class density-based classifier | [23] | 98.4% | ||
The automated edge detection technique | [24,25] | Defective solder junctions, short circuits, and bypassed substrings. | Not reported | |
Deep learning neural network | [26] | Cracks, shadowing, diode, soiling, hotspots, and offline module. | Classify 12 anomaly types with an average of 86% | |
(b) with input datasets from PV modules electrical I-V characteristics. | ||||
Multi-class adaptive neuro-fuzzy classifier | [19] | Partial shading, increased series resistance, bypass diode short-circuited, bypass diode impedance, PV module short-circuited. | 65–100% depending on fault type |
|
Principal component analysis (PCA) | [27] | Shading faults. | 97% |
|
AI nonlinear autoregressive exogenous neural network (NARX) | [28] | Open and short-circuit degradation, faulty MPPT, partial shading (PS). | 98.2% |
|
Multilayer neural network with a scaled conjugate gradient algorithm (SCG) | [29] | Short circuits, aging, shading faults, and bypass diode faults. | 99.6% |
|
Convolutional neural networks (CNN) | [30] | Partial Shading (PS), high impedance, low location mismatch, maximum power point tracking (MPPT). | 73.53% |
|
Multiclass adaptive boosting (AdaBoost) algorithm, using multiclass exponential (SAMME) loss function based on the classification and regression tree (CART) | [31] | Short-circuit faults (SCF), partial shading with the bypass-diode on (PSBO), partial shading with the bypass-diode reversed (PSBR), and abnormal aging faults (AAF). | 99.4% |
|
Radial basis function (RBF) kernel extreme learning machine (ELM) optimized by simulated annealing algorithm, | [32] | Short circuits, shading faults, and aging. | Shadows 91.55% | Need real outdoor experiments. |
Short circuits 93.64% | ||||
Aging 90.91% | ||||
Artificial neural network | [33] | Partial shading | Not reported | A single type of fault. |
Multiclass adaptive neuro-fuzzy classifier (MC-NFC) and ANN | [19] | Partial shading, high series resistance, bypass diode impedance and short circuits. | Not reported | The MC-NFC outperforms the ANN-classifier. |
(c) with input datasets from PV modules electrical I-V characteristics and environmental conditions. | ||||
Backward propagation NN optimized by genetic algorithm | [20] | Short circuits, local material aging, shading. | 78% for short circuits, 97% for aging, 100% shadows |
|
Neuro-fuzzy and simulation | [34] | Upper and lower earth faults, diode short-circuit faults, partial shading. | Not reported | Limited number of PV module circuit faults. |
Cursive linear model and an ANN | [35] | Short circuits, open circuits, partial shading, and degradation. | 92.64% | Limited number of PV module circuit faults. |
ANNs | [36] | Disconnected modules. | 97% |
|
(d) with input datasets from thermography analysis and PV modules electrical I-V characteristics. | ||||
Statistical features extraction and electrical measurements characteristics | [3] | Cracks, delamination, burn marks, PID, soiling, and open strings. | Not reported | Applied for CIGS PV modules. |
Fuzzy inference system (FIS) using Mamdani-type fuzzy controller | [37] | Identify the six main types of hotspots that influence PV modules. | 96.7% | Inability to detect hot spots when there is a lot of partial shading. |
Novel feature extraction based on mathematical parameters | [38] | Cracks, delamination, burn marks, PID, soiling, and open strings. | Not reported | Detect all types of CIGS thin-film PV modules, detect modules with multi-faults. |
Category/Type | Description |
---|---|
A | Soiling |
B | Cracking and soiling |
C | Cracks, burn marks, and soiling |
D | Potential-induced degradation (PID) |
E | PID and cracks |
F | PID, cracks, and delamination |
G | Open strings (HM) |
H | Dead modules |
Item | Number of |
---|---|
Nodes | 1078 |
Linear parameters | 2048 |
Nonlinear parameters | 48 |
Training data pairs | 36 |
Checking data pairs | 27 |
Fuzzy rules | 512 |
Type of Feature Extraction (FE) Methods | Type of Membership Function | Accuracy |
---|---|---|
Statistical (FE) | Triangle | 83.33% |
I-V measurement (FE) | Gaussian | 100% |
Mathematical parameter (FE) | All type | 100% |
Fault Type | Regression Model | R-sq % | p-Value |
---|---|---|---|
A | 62.34 | 0.062 | |
B | 34.83 | 0.056 | |
C | 99.99 | 0.06 | |
D | 48.67 | 0.012 | |
E | 57.41 | 0.029 | |
F | 77.43 | 0.315 | |
G | 69.24 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltuhamy, R.A.; Rady, M.; Almatrafi, E.; Mahmoud, H.A.; Ibrahim, K.H. Fault Detection and Classification of CIGS Thin-Film PV Modules Using an Adaptive Neuro-Fuzzy Inference Scheme. Sensors 2023, 23, 1280. https://doi.org/10.3390/s23031280
Eltuhamy RA, Rady M, Almatrafi E, Mahmoud HA, Ibrahim KH. Fault Detection and Classification of CIGS Thin-Film PV Modules Using an Adaptive Neuro-Fuzzy Inference Scheme. Sensors. 2023; 23(3):1280. https://doi.org/10.3390/s23031280
Chicago/Turabian StyleEltuhamy, Reham A., Mohamed Rady, Eydhah Almatrafi, Haitham A. Mahmoud, and Khaled H. Ibrahim. 2023. "Fault Detection and Classification of CIGS Thin-Film PV Modules Using an Adaptive Neuro-Fuzzy Inference Scheme" Sensors 23, no. 3: 1280. https://doi.org/10.3390/s23031280
APA StyleEltuhamy, R. A., Rady, M., Almatrafi, E., Mahmoud, H. A., & Ibrahim, K. H. (2023). Fault Detection and Classification of CIGS Thin-Film PV Modules Using an Adaptive Neuro-Fuzzy Inference Scheme. Sensors, 23(3), 1280. https://doi.org/10.3390/s23031280