Adaptive Inertial Sensor-Based Step Length Estimation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Derivation of the Model
2.3. Performance Evaluation
3. Results
3.1. Treadmill Experiment
3.1.1. Overall Results
3.1.2. Smartphone at Upper Arm
3.1.3. Smartphone at Hand
3.1.4. Smartphone at Pelvis
3.1.5. Smartphone at Thigh
3.2. Polygon
3.2.1. Overall Results
3.2.2. Results for Different Smartphone Positions
4. Discussion
4.1. Comparison of the Models
4.2. Evaluation of Walking on the Treadmill
4.3. Evaluation of Walking in the Polygon
4.4. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaeffer, D.K. MEMS Inertial Sensors: A Tutorial Overview. IEEE Commun. Mag. 2013, 51, 100–109. [Google Scholar] [CrossRef]
- Schiavi, A.; Prato, A.; Mazzoleni, F.; D’Emilia, G.; Gaspari, A.; Natale, E. Calibration of Digital 3-Axis MEMS Accelerometers: A Double-Blind «multi-Bilateral» Comparison. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 IoT., Virtual, 3–5 June 2020; pp. 542–547. [Google Scholar]
- Smartphone Sales Worldwide 2007–2021. Available online: https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/ (accessed on 16 October 2022).
- Isho, T.; Tashiro, H.; Usuda, S. Accelerometry-Based Gait Characteristics Evaluated Using a Smartphone and Their Association with Fall Risk in People with Chronic Stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 1305–1311. [Google Scholar] [CrossRef]
- Merchán-Baeza, J.A.; González-Sánchez, M.; Cuesta-Vargas, A.I. Using Smartphones to Collect Quantitative Data on Lower Limb Functionality in People Who Have Suffered a Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 3555–3562. [Google Scholar] [CrossRef]
- Schifino, G.; Cimolin, V.; Pau, M.; da Cunha, M.J.; Leban, B.; Porta, M.; Galli, M.; Souza Pagnussat, A. Functional Electrical Stimulation for Foot Drop in Post-Stroke People: Quantitative Effects on Step-to-Step Symmetry of Gait Using a Wearable Inertial Sensor. Sensors 2021, 21, 921. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Ertzgaard, P.; Lundgren, M.; Grip, H. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors. Sensors 2022, 22, 1171. [Google Scholar] [CrossRef]
- Alharthi, A.S.; Casson, A.J.; Ozanyan, K.B. Gait Spatiotemporal Signal Analysis for Parkinson’s Disease Detection and Severity Rating. IEEE Sens. J. 2020, 21, 1838–1848. [Google Scholar] [CrossRef]
- Clavijo-Buendía, S.; Molina-Rueda, F.; Martín-Casas, P.; Ortega-Bastidas, P.; Monge-Pereira, E.; Laguarta-Val, S.; Morales-Cabezas, M.; Cano-de-la-Cuerda, R. Construct Validity and Test-Retest Reliability of a Free Mobile Application for Spatio-Temporal Gait Analysis in Parkinson’s Disease Patients. Gait Posture 2020, 79, 86–91. [Google Scholar] [CrossRef]
- Goyal, J.; Khandnor, P.; Aseri, T.C. Classification, Prediction, and Monitoring of Parkinson’s Disease Using Computer Assisted Technologies: A Comparative Analysis. Eng. Appl. Artif. Intell. 2020, 96, 103955. [Google Scholar] [CrossRef]
- Sijobert, B.; Benoussaad, M.; Denys, J.; Pissard-Gibollet, R.; Geny, C.; Coste, C.A. Implementation and Validation of a Stride Length Estimation Algorithm, Using a Single Basic Inertial Sensor on Healthy Subjects and Patients Suffering from Parkinson’s Disease. Health 2015, 7, 704–714. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, M.; Mücke, A.; Küderle, A.; Roth, N.; Gladow, T.; Gaßner, H.; Marxreiter, F.; Klucken, J.; Eskofier, B.M.; Kluge, F. Detection of Unsupervised Standardized Gait Tests From Real-World Inertial Sensor Data in Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2103–2111. [Google Scholar] [CrossRef]
- Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Irrera, F.; Olmo, G. Predicting Axial Impairment in Parkinson’s Disease through a Single Inertial Sensor. Sensors 2022, 22, 412. [Google Scholar] [CrossRef] [PubMed]
- Sica, M.; Tedesco, S.; Crowe, C.; Kenny, L.; Moore, K.; Timmons, S.; Barton, J.; O’Flynn, B.; Komaris, D.-S. Continuous Home Monitoring of Parkinson’s Disease Using Inertial Sensors: A Systematic Review. PLoS ONE 2021, 16, e0246528. [Google Scholar] [CrossRef] [PubMed]
- Dalton, A.; Khalil, H.; Busse, M.; Rosser, A.; van Deursen, R.; ÓLaighin, G. Analysis of Gait and Balance through a Single Triaxial Accelerometer in Presymptomatic and Symptomatic Huntington’s Disease. Gait Posture 2013, 37, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Talman, L.S.; Hiller, A.L. Approach to Posture and Gait in Huntington’s Disease. Front. Bioeng. Biotechnol. 2021, 9, 668699. [Google Scholar] [CrossRef]
- Bennasar, M.; Hicks, Y.; Clinch, S.; Jones, P.; Rosser, A.; Busse, M.; Holt, C. Huntington’s Disease Assessment Using Tri Axis Accelerometers. Procedia Comput. Sci. 2016, 96, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Sprager, S.; Juric, M.B. An Efficient HOS-Based Gait Authentication of Accelerometer Data. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1486–1498. [Google Scholar] [CrossRef]
- Sun, F.; Mao, C.; Fan, X.; Li, Y. Accelerometer-Based Speed-Adaptive Gait Authentication Method for Wearable IoT Devices. IEEE Internet Things J. 2019, 6, 820–830. [Google Scholar] [CrossRef]
- Axente, M.-S.; Dobre, C.; Ciobanu, R.-I.; Purnichescu-Purtan, R. Gait Recognition as an Authentication Method for Mobile Devices. Sensors 2020, 20, 4110. [Google Scholar] [CrossRef]
- Li, W.; Lu, W.; Sha, X.; Xing, H.; Lou, J.; Sun, H.; Zhao, Y. Wearable Gait Recognition Systems Based on MEMS Pressure and Inertial Sensors: A Review. IEEE Sens. J. 2022, 22, 1092–1104. [Google Scholar] [CrossRef]
- Filipi Gonçalves dos Santos, C.; de Souza Oliveira, D.; Passos, L.A.; Gonçalves Pires, R.; Felipe Silva Santos, D.; Pascotti Valem, L.; Moreira, T.P.; Cleison S. Santana, M.; Roder, M.; Papa, J.P.; et al. Gait Recognition Based on Deep Learning: A Survey. ACM Comput. Surv. 2022, 55, 34. [Google Scholar] [CrossRef]
- Hasan, M.A.M.; Abir, F.A.; Siam, M.A.; Shin, J. Gait Recognition With Wearable Sensors Using Modified Residual Block-Based Lightweight CNN. IEEE Access 2022, 10, 42577–42588. [Google Scholar] [CrossRef]
- Lima, W.S.; Bragança, H.L.S.; Souto, E.J.P. NOHAR—NOvelty Discrete Data Stream for Human Activity Recognition Based on Smartphones with Inertial Sensors. Expert Syst. Appl. 2021, 166, 114093. [Google Scholar] [CrossRef]
- Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A Robust Human Activity Recognition System Using Smartphone Sensors and Deep Learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [Google Scholar] [CrossRef]
- Lu, Y.; Velipasalar, S. Autonomous Human Activity Classification From Wearable Multi-Modal Sensors. IEEE Sens. J. 2019, 19, 11403–11412. [Google Scholar] [CrossRef]
- Moreira, D.; Barandas, M.; Rocha, T.; Alves, P.; Santos, R.; Leonardo, R.; Vieira, P.; Gamboa, H. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors. Sensors 2021, 21, 6316. [Google Scholar] [CrossRef]
- Shavit, Y.; Klein, I. Boosting Inertial-Based Human Activity Recognition With Transformers. IEEE Access 2021, 9, 53540–53547. [Google Scholar] [CrossRef]
- Boyer, P.; Burns, D.; Whyne, C. Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors. Sensors 2021, 21, 1669. [Google Scholar] [CrossRef]
- Kuang, J.; Niu, X.; Chen, X. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones. Sensors 2018, 18, 1391. [Google Scholar] [CrossRef] [Green Version]
- Bylemans, I.; Weyn, M.; Klepal, M. Mobile Phone-Based Displacement Estimation for Opportunistic Localisation Systems. In Proceedings of the 2009 Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Washington, DC, USA, 11–16 October 2009; pp. 113–118. [Google Scholar]
- Do, T.-N.; Liu, R.; Yuen, C.; Zhang, M.; Tan, U.-X. Personal Dead Reckoning Using IMU Mounted on Upper Torso and Inverted Pendulum Model. IEEE Sens. J. 2016, 16, 7600–7608. [Google Scholar] [CrossRef]
- Kang, W.; Han, Y. SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization. IEEE Sens. J. 2015, 15, 2906–2916. [Google Scholar] [CrossRef]
- Tian, Q.; Salcic, Z.; Wang, K.I.-K.; Pan, Y. A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones. IEEE Sens. J. 2016, 16, 2079–2093. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Niu, X.; Zhuang, Y.; Gao, Z.; Hu, X.; El-Sheimy, N. Inertial Sensing Meets Machine Learning: Opportunity or Challenge? IEEE Trans. Intell. Transp. Syst. 2022, 23, 9995–10011. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, H.; Wang, J.; Sun, L.; Ma, Z.; Zhang, C.; Fu, M.; Zhao, F. Recent Advances in Pedestrian Navigation Activity Recognition: A Review. IEEE Sens. J. 2022, 22, 7499–7518. [Google Scholar] [CrossRef]
- Xing, H.; Li, J.; Hou, B.; Zhang, Y.; Guo, M. Pedestrian Stride Length Estimation from IMU Measurements and ANN Based Algorithm. J. Sens. 2017, 2017, e6091261. [Google Scholar] [CrossRef] [Green Version]
- Ning, F.-S.; Chen, Y.-C. Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation. Sensors 2020, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Widyawan; Pirkl, G.; Munaretto, D.; Fischer, C.; An, C.; Lukowicz, P.; Klepal, M.; Timm-Giel, A.; Widmer, J.; Pesch, D.; et al. Virtual Lifeline: Multimodal Sensor Data Fusion for Robust Navigation in Unknown Environments. Pervasive Mob. Comput. 2012, 8, 388–401. [Google Scholar] [CrossRef]
- Moder, T.; Hafner, P.; Wisiol, K.; Wieser, M. 3D Indoor Positioning with Pedestrian Dead Reckoning and Activity Recognition Based on Bayes Filtering. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 717–720. [Google Scholar]
- Opiela, M.; Galčík, F. Grid-Based Bayesian Filtering Methods for Pedestrian Dead Reckoning Indoor Positioning Using Smartphones. Sensors 2020, 20, 5343. [Google Scholar] [CrossRef]
- Kasebzadeh, P.; Fritsche, C.; Hendeby, G.; Gunnarsson, F.; Gustafsson, F. Improved Pedestrian Dead Reckoning Positioning with Gait Parameter Learning. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 379–385. [Google Scholar]
- Zhou, R. Pedestrian Dead Reckoning on Smartphones with Varying Walking Speed. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [Google Scholar]
- Köse, A.; Cereatti, A.; Della Croce, U. Bilateral Step Length Estimation Using a Single Inertial Measurement Unit Attached to the Pelvis. J. NeuroEngineering Rehabil. 2012, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebula, J.R.; Ojeda, L.V.; Adamczyk, P.G.; Kuo, A.D. Measurement of Foot Placement and Its Variability with Inertial Sensors. Gait Posture 2013, 38, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Collin, J.; Davidson, P.; Kirkko-Jaakkola, M.; Leppäkoski, H. Inertial Sensors and Their Applications. In Handbook of Signal Processing Systems; Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 51–85. ISBN 978-3-319-91734-4. [Google Scholar]
- Groves, P.D. Navigation Using Inertial Sensors [Tutorial]. IEEE Aerosp. Electron. Syst. Mag. 2015, 30, 42–69. [Google Scholar] [CrossRef]
- Vezočnik, M.; Juric, M.B. Average Step Length Estimation Models’ Evaluation Using Inertial Sensors: A Review. IEEE Sens. J. 2019, 19, 396–403. [Google Scholar] [CrossRef]
- Alvarez, D.; Gonzalez, R.C.; Lopez, A.; Alvarez, J.C. Comparison of Step Length Estimators from Weareable Accelerometer Devices. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 5964–5967. [Google Scholar]
- Renaudin, V.; Susi, M.; Lachapelle, G. Step Length Estimation Using Handheld Inertial Sensors. Sensors 2012, 12, 8507–8525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chen, X.; Ma, X.; Wu, Y.; Jiang, H.; Fang, D.; Tang, Z.; Ma, Y. SmartMTra: Robust Indoor Trajectory Tracing Using Smartphones. IEEE Sens. J. 2017, 17, 3613–3624. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Displacement of the Pelvis during Human Walking: Experimental Data and Model Predictions. Gait Posture 1997, 6, 249–262. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of Spatio-Temporal Gait Parameters from Trunk Accelerations during Human Walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lan, K.-C.; Shih, W.-Y. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System. Sensors 2013, 13, 4781–4810. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, H. Using the ADXL202 in Pedometer and Personal Navigation Applications. Analog. Devices AN-602 Appl. Note 2002, 2, 1–6. [Google Scholar]
- Kim, J.W.; Jang, H.-J.; Hwang, D.H.; Park, C. A Step, Stride and Heading Determination for the Pedestrian Navigation System. J. Glob. Position. Syst. 2004, 1, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Vezočnik, M.; Kamnik, R.; Juric, M.B. Inertial Sensor-Based Step Length Estimation Model by Means of Principal Component Analysis. Sensors 2021, 21, 3527. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Y.; Luo, H.; Guizani, N. Accurate Indoor Localization Based on Crowd Sensing. Wirel. Commun. Mob. Comput. 2016, 16, 2852–2868. [Google Scholar] [CrossRef]
- Mikov, A.; Moschevikin, A.; Fedorov, A.; Sikora, A. A Localization System Using Inertial Measurement Units from Wireless Commercial Hand-Held Devices. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard, France, 28–31 October 2013; pp. 1–7. [Google Scholar]
- Shin, S.H.; Park, C.G. Adaptive Step Length Estimation Algorithm Using Optimal Parameters and Movement Status Awareness. Med. Eng. Phys. 2011, 33, 1064–1071. [Google Scholar] [CrossRef]
- Sharp, I.; Yu, K. Sensor-Based Dead-Reckoning for Indoor Positioning. Phys. Commun. 2014, 13, 4–16. [Google Scholar] [CrossRef]
- Vezočnik, M.; Juric, M.B. Open Repository for Evaluation. Available online: https://github.com/repositoryadmin/SLERepository (accessed on 15 October 2022).
- Auvinet, B.; Berrut, G.; Touzard, C.; Moutel, L.; Collet, N.; Chaleil, D.; Barrey, E. Reference Data for Normal Subjects Obtained with an Accelerometric Device. Gait Posture 2002, 16, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95442-4. [Google Scholar]
- Papachristou, C.J. Kinematics. In Introduction to Mechanics of Particles and Systems; Papachristou, C.J., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 13–31. ISBN 978-3-030-54271-9. [Google Scholar]
- Wade, F.E.; Kellaher, G.K.; Pesquera, S.; Baudendistel, S.T.; Roy, A.; Clark, D.J.; Seidler, R.D.; Ferris, D.P.; Manini, T.M.; Hass, C.J. Kinematic Analysis of Speed Transitions within Walking in Younger and Older Adults. J. Biomech. 2022, 138, 111130. [Google Scholar] [CrossRef] [PubMed]
- Sprager, S.; Juric, M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [Google Scholar] [CrossRef]
Age Groups [in Years] | Gender | Height | Leg Length | |
---|---|---|---|---|
Male | Female | |||
19–25 | 3 | 0 | 1.81–1.88 m (mean value of 1.86 ± 0.04 m) | 1.09–1.16 m (mean value of 1.12 ± 0.04 m) |
26–32 | 3 | 4 | 1.60–1.83 m (mean value of 1.73 ± 0.09 m) | 0.90–1.09 m (mean value of 1.02 ± 0.06 m) |
Models | Input | Equation | Basis |
---|---|---|---|
Mikov et al. [59] | tunable constant , step frequency , maximum vertical acceleration value within a step , minimum vertical acceleration value within a step | the model proposed by Weinberg [55] | |
Bylemans et al. [31] | tunable constant , step frequency , maximum vertical acceleration value within a step , minimum vertical acceleration value within a step , mean absolute vertical acceleration value within a step | the model proposed by Kim et al. [56] | |
Shin and Park [60] | tunable constants , , and , acceleration magnitude variance within a step , step frequency | influence of step frequency and acceleration magnitude variance on step length | |
Sharp and Yu [61] | tunable constants , , , and , user’s height , step frequency , maximum vertical acceleration value within a step , mininumum vertical acceleration value within a step | relation between step length and user’s height, step frequency and the difference between the maximum and minimum vertical acceleration values within the step |
Models | MAE [cm] | SD [cm] | CV |
---|---|---|---|
Proposed model | 5.64 | 4.94 | 0.88 |
Mikov et al. [59] | 10.92 | 13.56 | 1.24 |
Bylemans et al. [31] | 8.02 | 7.27 | 0.91 |
Sharp and Yu [61] | 5.94 | 4.64 | 0.78 |
Shin and Park [60] | 5.67 | 4.33 | 0.76 |
Models | Overestimation [%] | Underestimation [%] |
---|---|---|
Proposed model | 39.99 | 60.01 |
Mikov et al. [59] | 46.20 | 53.79 |
Bylemans et al. [31] | 47.79 | 52.21 |
Sharp and Yu [61] | 36.18 | 63.82 |
Shin and Park [60] | 36.38 | 63.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vezočnik, M.; Juric, M.B. Adaptive Inertial Sensor-Based Step Length Estimation Model. Sensors 2022, 22, 9452. https://doi.org/10.3390/s22239452
Vezočnik M, Juric MB. Adaptive Inertial Sensor-Based Step Length Estimation Model. Sensors. 2022; 22(23):9452. https://doi.org/10.3390/s22239452
Chicago/Turabian StyleVezočnik, Melanija, and Matjaz B. Juric. 2022. "Adaptive Inertial Sensor-Based Step Length Estimation Model" Sensors 22, no. 23: 9452. https://doi.org/10.3390/s22239452
APA StyleVezočnik, M., & Juric, M. B. (2022). Adaptive Inertial Sensor-Based Step Length Estimation Model. Sensors, 22(23), 9452. https://doi.org/10.3390/s22239452