Exploring Machine Learning-Based Fault Monitoring for Polymer-Based Additive Manufacturing: Challenges and Opportunities
Abstract
:1. Introduction
- studies which proposed machine learning-based solutions for fault analysis in data-driven systems;
- recent studies for monitoring print defects, e.g., delamination, warping, and geometry defects; and
- recent studies for diagnosing and predicting faults based on mechanical parts of the 3D printers, e.g., synchronous belts and bearings.
2. Equipment
3. Additive Manufacturing and Data-Driven Preparation
3.1. Sensor, Signal, and Data
- Acoustic emission (AE) signals contain information on mechanisms such as friction, crack, and deformations of produced products. Furthermore, AE sensors can be attached on the side of the filament extruder to collect machine state and determine whether the machine is operating in normal condition or if errors such as clogging and a lack of materials for production [38]. Most studies use this type of sensor to analyze mechanical faults, such as in [38,59,60,70].
- Acceleration signals produce information about the extrusion head’s change of motion, acceleration, and vibration. Reference [39] uses acceleration sensors for data-driven monitoring.
3.2. Data-Driven Predictive Monitoring
4. Data-Driven Mechanical Fault Monitoring
4.1. Acoustic Emission
4.2. Acceleration and Vibration
4.3. Attitude Signals
4.4. Magnetic Field
5. Discussion
5.1. Monitoring and Diagnosis
5.2. Challenges and Opportunities
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AM | additive manufacturing |
FDM | fused deposition modeling |
SLM | selective laser melting |
SLA | stereolithography |
SLS | selective laser sintering |
DLP | digital light process |
MJF | multi jet fusion |
ML | machine learning |
AE | acoustic emission |
CFSFDP | clustering-by-fast-search-and-find-of-density-peak |
K-SVD | K-singular value decomposition |
LDA | linear discriminant analysis |
SvM | support vector machine |
HSMM | hidden semi-Markov model |
LS-SVM | least squares SVM |
SLA | back-propagation neural network |
BCNN | Bayesian convolutional neural networks |
TCN | temporal convolutional network |
LSTM | long short-term memort |
RMS | root mean square |
IoT | internet of things |
EFMSA | error fusion of multiple sparse auto-encode |
DFESN | deep fuzzy echo state network |
SPE | squared prediction error |
ESN | echo state network |
LPP | locality preserving projects |
OSL | one-shot Learning |
BiGAN | bidirectional generative adversarial networks |
SMOTE | synthetic minority over-sampling technique |
DTL | deep-transfer learning |
SLA | stereolithography |
References
- Grierson, D.; Rennie, A.E.W.; Quayle, S.D. Machine Learning for Additive Manufacturing. Encyclopedia 2021, 1, 576–588. [Google Scholar] [CrossRef]
- Sampedro, G.A.; Putra, M.A.P.; Kim, D.S.; Lee, J.M. 3D Printer State Prediction: A Deep Learning Model Approach. In Proceedings of the 2021 1st International Conference in Information and Computing Research (iCORE), Manila, Philippines, 11–12 December 2021; pp. 135–138. [Google Scholar]
- Sampedro, G.A.; Agron, D.J.; Kim, R.G.; Kim, D.S.; Lee, J.M. Fused Deposition Modeling 3D Printing Fault Diagnosis using Temporal Convolutional Network. In Proceedings of the 2021 1st International Conference in Information and Computing Research (iCORE), Manila, Philippines, 11–12 December 2021; pp. 62–65. [Google Scholar]
- García-Domínguez, A.; Claver, J.; Camacho, A.M.; Sebastián, M.A. Analysis of General and Specific Standardization Developments in Additive Manufacturing From a Materials and Technological Approach. IEEE Access 2020, 8, 125056–125075. [Google Scholar] [CrossRef]
- Qi, X.; Chen, G.; Li, Y.; Cheng, X.; Li, C. Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives. Engineering 2019, 5, 721–729. [Google Scholar] [CrossRef]
- Bhushan, B.; Caspers, M. An overview of additive manufacturing (3D printing) for microfabrication. Microsyst. Technol. 2017, 23, 1117–1124. [Google Scholar] [CrossRef]
- Paolini, A.; Kollmannsberger, S.; Rank, E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019, 30, 100894. [Google Scholar] [CrossRef]
- Grimaldo Ruiz, O.; Rodriguez Reinoso, M.; Ingrassia, E.; Vecchio, F.; Maniero, F.; Burgio, V.; Civera, M.; Bitan, I.; Lacidogna, G.; Surace, C. Design and Mechanical Characterization Using Digital Image Correlation of Soft Tissue-Mimicking Polymers. Polymers 2022, 14, 2639. [Google Scholar] [CrossRef]
- Yang, H.; Rao, P.; Simpson, T.; Lu, Y.; Witherell, P.; Nassar, A.R.; Reutzel, E.; Kumara, S. Six-Sigma Quality Management of Additive Manufacturing. Proc. IEEE 2021, 109, 347–376. [Google Scholar] [CrossRef]
- Liao, J.; Shen, Z.; Xiong, G.; Liu, C.; Luo, C.; Lu, J. Preliminary Study on Fault Diagnosis and Intelligent Learning of Fused Deposition Modeling (FDM) 3D Printer. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019. [Google Scholar] [CrossRef]
- Bochmann, L.; Bayley, C.; Helu, M.; Transchel, R.; Wegener, K.; Dornfeld, D. Understanding error generation in fused deposition modeling. Surf. Topogr. Metrol. Prop. 2015, 3, 014002. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.; Yuan, L.; Pratt, A.; Balogun, Y. In situ monitoring for fused filament fabrication process: A review. Addit. Manuf. 2021, 38, 101749. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2020, 54, 63–94. [Google Scholar] [CrossRef]
- Haghighi, A.; Li, L. A hybrid physics-based and data-driven approach for characterizing porosity variation and filament bonding in extrusion-based additive manufacturing. Addit. Manuf. 2020, 36, 101399. [Google Scholar] [CrossRef]
- Wang, W.; Ning, J.; Liang, S.Y. Analytical Prediction of Balling, Lack-of-Fusion and Keyholing Thresholds in Powder Bed Fusion. Appl. Sci. 2021, 11, 12053. [Google Scholar] [CrossRef]
- Bruna-Rosso, C.; Demir, A.G.; Previtali, B. Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction. Mater. Des. 2018, 156, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Özen, A.; Auhl, D.; Völlmecke, C.; Kiendl, J.; Abali, B.E. Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (FDM) 3D-printed PETG. Materials 2021, 14, 2556. [Google Scholar] [CrossRef]
- Cattenone, A.; Morganti, S.; Alaimo, G.; Auricchio, F. Finite element analysis of additive manufacturing based on fused deposition modeling: Distortions prediction and comparison with experimental data. J. Manuf. Sci. Eng. 2019, 141, 011010. [Google Scholar] [CrossRef]
- Marinkovic, D.; Zehn, M. Survey of finite element method-based real-time simulations. Appl. Sci. 2019, 9, 2775. [Google Scholar] [CrossRef] [Green Version]
- Li, H. The finite element method. In Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–12. [Google Scholar]
- Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 2017, 3, 685–694. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Long, J.; Li, C.; Bai, Y. Dynamic condition monitoring for 3D printers by using error fusion of multiple sparse auto-encoders. Comput. Ind. 2019, 105, 164–176. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Wang, M.; Long, J.; Bai, Y.; Li, C. Deep Fuzzy Echo State Networks for Machinery Fault Diagnosis. IEEE Trans. Fuzzy Syst. 2020, 28, 1205–1218. [Google Scholar] [CrossRef]
- Hu, H.; He, K.; Zhong, T.; Hong, Y. Fault diagnosis of FDM process based on support vector machine (SVM). Rapid Prototyp. J. 2019, 26, 330–348. [Google Scholar] [CrossRef]
- Shevchik, S.; Kenel, C.; Leinenbach, C.; Wasmer, K. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit. Manuf. 2018, 21, 598–604. [Google Scholar] [CrossRef]
- Fang, Q.; Xiong, G.; Shang, X.; Liu, S.; Hu, B.; Shen, Z. An Enhanced Fault Diagnosis Method with Uncertainty Quantification Using Bayesian Convolutional Neural Network. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020. [Google Scholar] [CrossRef]
- Meng, L.; McWilliams, B.; Jaronski, W.; Park, H.Y.; Jung, Y.G.; Lee, J.; Zhang, J. Machine Learning in Additive Manufacturing: A Review. JOM 2020, 72, 2363–2377. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Wang, W. Research on condition monitoring of FDM equipment based on LSTM. In Proceedings of the 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 27–28 August 2021; pp. 612–615. [Google Scholar]
- Corradini, F.; Silvestri, M. A digital twin based self-calibration tool for fault prediction of fdm additive manufacturing systems. Ann. DAAAM Proc. 2021, 10, 607–616. [Google Scholar]
- Guo, J.; Li, X.; Liu, Z.; Zhang, S.; Wu, J.; Li, C.; Long, J. A novel doublet extreme learning machines for Delta 3D printer fault diagnosis using attitude sensor. ISA Trans. 2021, 109, 327–339. [Google Scholar] [CrossRef]
- Li, C.; Cabrera, D.; Sancho, F.; Sánchez, R.V.; Cerrada, M.; Long, J.; de Oliveira, J.V. Fusing convolutional generative adversarial encoders for 3D printer fault detection with only normal condition signals. Mech. Syst. Signal Process. 2021, 147, 107108. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, X.; Li, C.; Liang, M. Pre-classified reservoir computing for the fault diagnosis of 3D printers. Mech. Syst. Signal Process. 2021, 146, 106961. [Google Scholar] [CrossRef]
- Verana, M.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. Deep learning-based 3d printer fault detection. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Republic of Korea, 17–20 August 2021; pp. 99–102. [Google Scholar]
- Sharma, V.; Gupta, S.; Mehta, G.; Lad, B.K. A quantum-based diagnostics approach for additive manufacturing machine. IET Collab. Intell. Manuf. 2021, 3, 184–192. [Google Scholar] [CrossRef]
- Scheffel, R.M.; Fröhlich, A.A.; Silvestri, M. Automated fault detection for additive manufacturing using vibration sensors. Int. J. Comput. Integr. Manuf. 2021, 34, 500–514. [Google Scholar] [CrossRef]
- Yang, Z.; Gjorgjevikj, D.; Long, J.; Zi, Y.; Zhang, S.; Li, C. Sparse Autoencoder-based Multi-head Deep Neural Networks for Machinery Fault Diagnostics with Detection of Novelties. Chin. J. Mech. Eng. (Engl. Ed.) 2021, 34, 54. [Google Scholar] [CrossRef]
- Zeng, L.; Zou, X. Research on Fault Analysis and Prediction Algorithm Based on Delta 3D Printer. In Proceedings of the International Conference on Maintenance Engineering, Tianjin, China, 20-23 October 2021; Springer: Cham, Switzerland, 2021; Volume 105. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y. Machine Fault Diagnosis of Fused Filament Fabrication Process with Physics-Constrained Dictionary Learning. Procedia Manuf. 2021, 53, 726–734. [Google Scholar] [CrossRef]
- Li, C.; Cabrera, D.; Sancho, F.; Sanchez, R.V.; Cerrada, M.; Oliveira, J.V.D. One-Shot Fault Diagnosis of Three-Dimensional Printers through Improved Feature Space Learning. IEEE Trans. Ind. Electron. 2021, 68, 8768–8776. [Google Scholar] [CrossRef]
- Henson, C.M.; Decker, N.I.; Huang, Q. A digital twin strategy for major failure detection in fused deposition modeling processes. Procedia Manuf. 2021, 53, 359–367. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z. Intelligent Fault Diagnosis of Delta 3D Printers Using Local Support Vector Machine by a Cheap Attitude Multi-sensor. In Proceedings of the 2020 Prognostics and Health Management Conference (PHM-Besançon), Besancon, France, 4–7 May 2020. [Google Scholar] [CrossRef]
- Lambos, N.; Vosniakos, G.C.; Papazetis, G. Low-cost automatic identification of nozzle clogging in material extrusion 3D printers. Procedia Manuf. 2020, 51, 274–279. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, W.; Wang, G. In-Situ Monitoring of Additive Manufacturing Process Based on Vibration Data. In Proceedings of the 2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, 5–6 September 2020. [Google Scholar] [CrossRef]
- He, K.; Zeng, L.; Shui, Q.; Long, J.; Li, C.; Cabrera, D. Low-cost and Small-sample Fault Diagnosis for 3D Printers Based on Echo State Networks. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Qingdao, China, 25–27 October 2019. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W.; Li, Q.; Wang, T.; Wang, G. In-Situ Monitoring and Diagnosing for Fused Filament Fabrication Process Based on Vibration Sensors. Sensors 2019, 19, 2589. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Wu, J.; Sun, Z.; Long, J.; Zhang, S. Fault Diagnosis of Delta 3D Printers Using Transfer Support Vector Machine With Attitude Signals. IEEE Access 2019, 7, 40359–40368. [Google Scholar] [CrossRef]
- Wang, J.; Yan, J.; Li, C.; Gao, R.X.; Zhao, R. Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction. Comput. Ind. 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Tlegenov, Y.; Lu, W.F.; Hong, G.S. A dynamic model for current-based nozzle condition monitoring in fused deposition modelling. Prog. Addit. Manuf. 2019, 4, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Long, J.; Li, C.; Cabrera, D.; Zhang, S. Intelligent fault diagnosis of 3D printers based on reservoir computing. Int. J. Perform. Eng. 2019, 15, 3171. [Google Scholar] [CrossRef]
- Zhang, S.; He, K.; Cabrera, D.; Li, C.; Bai, Y.; Long, J. Transmission condition monitoring of 3d printers based on the echo state network. Appl. Sci. 2019, 9, 3058. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Hong, Y.; Zhang, S.; Cabrera, D.; Zhong, J. Improving extreme learning machine by a level-based learning swarm optimizer and its application to fault diagnosis of 3d printers. Int. J. Perform. Eng. 2019, 15, 2972. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Oliveira, J.V.D. Fault Diagnosis for 3D Printers Using Suboptimal Networked Deep Learning. Jixie Gongcheng Xuebao/J. Mech. Eng. 2019, 55, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Bacha, A.; Sabry, A.H.; Benhra, J. Fault diagnosis in the field of additive manufacturing (3D printing) using Bayesian Networks. Int. J. Online Biomed. Eng. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, L.; Ren, L.; Luo, X. 3D printing fault detection based on process data. Lect. Notes Electr. Eng. 2019, 529, 385–396. [Google Scholar] [CrossRef]
- Li, X.; Guo, J.; Jia, X.; Zhang, S.; Liu, Z. Intelligent fault diagnosis of delta 3D printers using attitude sensors based on extreme learning machines. Int. J. Perform. Eng. 2019, 15, 3196. [Google Scholar] [CrossRef]
- He, K.; Yang, Z.; Bai, Y.; Long, J.; Li, C. Intelligent fault diagnosis of delta 3D printers using attitude sensors based on support vector machines. Sensors 2018, 18, 1298. [Google Scholar] [CrossRef]
- Wasmer, K.; Le-Quang, T.; Meylan, B.; Shevchik, S.A. In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach. J. Mater. Eng. Perform. 2018, 28, 666–672. [Google Scholar] [CrossRef]
- Miao, G.; Hsieh, S.J.; Segura, J.A.; Wang, J.C. Cyber-physical system for thermal stress prevention in 3D printing process. Int. J. Adv. Manuf. Technol. 2018, 100, 553–567. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, C.S.; Kim, S.M.; Lee, S.W. Development of Data-Driven In-Situ Monitoring and Diagnosis System of Fused Deposition Modeling (FDM) Process Based on Support Vector Machine Algorithm. Int. J. Precis. Eng. -Manuf.-Green Technol. 2018, 5, 479–486. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Wu, B.; Wang, Y. An improved fault diagnosis approach for FDM process with acoustic emission. J. Manuf. Process. 2018, 35, 570–579. [Google Scholar] [CrossRef]
- Delli, U.; Chang, S. Automated Process Monitoring in 3D Printing Using Supervised Machine Learning. Procedia Manuf. 2018, 26, 865–870. [Google Scholar] [CrossRef]
- Tlegenov, Y.; Hong, G.S.; Lu, W.F. Nozzle condition monitoring in 3D printing. Robot. -Comput.-Integr. Manuf. 2018, 54, 45–55. [Google Scholar] [CrossRef]
- Kim, C.; Espalin, D.; Cuaron, A.; Perez, M.A.; Macdonald, E.; Wicker, R.B. Unobtrusive in situ diagnostics of filament-fed material extrusion additive Manufacturing. IEEE Trans. Components Packag. Manuf. Technol. 2018, 8, 1469–1476. [Google Scholar] [CrossRef]
- Koglbauer, A.; Wolf, S.; Märten, O.; Kramer, R. A compact beam diagnostic device for 3D additive manufacturing systems. In Laser 3D Manufacturing V; SPIE: Bellingham, WA, USA, 2018. [Google Scholar]
- He, K.; Wang, H.; Hu, H. Approach to online defect monitoring in fused deposition modeling based on the variation of the temperature field. Complexity 2018, 2018, 3426928. [Google Scholar] [CrossRef]
- Remadna, A.; Benatia, A.; Louis, A.; Gout, C. A Predictive Analysis Data-Based for Additive Manufacturing. In Advances in Manufacturing Technology XXXII; IOS Press: Amsterdam, The Netherlands, 2018; pp. 125–130. [Google Scholar]
- Kovalenko, I.; Verron, S.; Garan, M.; Šafka, J.; Moučka, M. Implementation of Non-Destructive Evaluation and Process Monitoring in DLP-based Additive Manufacturing. Open Eng. 2017, 7, 100–105. [Google Scholar] [CrossRef]
- Wu, H.; Yu, Z.; Wang, Y. A New Approach for Online Monitoring of Additive Manufacturing Based on Acoustic Emission. In Volume 3: Joint MSEC-NAMRC Symposia; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Myers, K.R.; Tham, W.Y.; Yin, Y.; Cohodes, N.; Thursby, J.G.; Thursby, M.C.; Schiffer, P.; Walsh, J.T.; Lakhani, K.R.; Wang, D. Unequal effects of the COVID-19 pandemic on scientists. Nat. Hum. Behav. 2020, 4, 880–883. [Google Scholar] [CrossRef]
- Wu, H.; Yu, Z.; Wang, Y. Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model. Int. J. Adv. Manuf. Technol. 2017, 90, 2027–2036. [Google Scholar] [CrossRef]
- Costa, C.M.d.; Baltus, P. Design Methodology for Industrial Internet-of-Things Wireless Systems. IEEE Sens. J. 2021, 21, 5529–5542. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sens. J. 2015, 15, 3164–3185. [Google Scholar] [CrossRef]
- Xie, T.; Huang, X.; Choi, S.K. Intelligent Mechanical Fault Diagnosis Using Multisensor Fusion and Convolution Neural Network. IEEE Trans. Ind. Inform. 2022, 18, 3213–3223. [Google Scholar] [CrossRef]
- Ma, B.; Cai, W.; Han, Y.; Yu, G. A Novel Probability Confidence CNN Model and Its Application in Mechanical Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Shi, J.; Wu, D. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. -Comput.-Integr. Manuf. 2019, 57, 488–495. [Google Scholar] [CrossRef]
- Lu, Y.; Lai, Z.; Li, X.; Zhang, D.; Wong, W.K.; Yuan, C. Learning Parts-Based and Global Representation for Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3345–3360. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Tang, K. Support-Free Layered Process Planning Toward 3 + 2-Axis Additive Manufacturing. IEEE Trans. Autom. Sci. Eng. 2019, 16, 838–850. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, C.; Tang, X. A Geometry Feature Aggregation Method for Point Cloud Classification and Segmentation. IEEE Access 2021, 9, 140504–140511. [Google Scholar] [CrossRef]
- Elforjani, M.; Shanbr, S. Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning. IEEE Trans. Ind. Electron. 2018, 65, 5864–5871. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Mahmood, A.K.B.; Yahya, N.; Saboor, A.; Abbas, M.Z.; Khan, Z.; Rimsan, M. State-of-the-Art Review on the Acoustic Emission Source Localization Techniques. IEEE Access 2021, 9, 101246–101266. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Yu, Z. In situ monitoring of FDM machine condition via acoustic emission. Int. J. Adv. Manuf. Technol. 2015, 84, 1483–1495. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Zhang, X.; Bai, Y.; Zheng, C. An Attitude Estimation Method Based on Monocular Vision and Inertial Sensor Fusion for Indoor Navigation. IEEE Sens. J. 2021, 21, 27051–27061. [Google Scholar] [CrossRef]
- Jaeger, H. The ”Echo State” Approach to Analysing and Training Recurrent Neural Networks; GMD—German National Research Institute for Computer Science: Bonn, Germany, 2001. [Google Scholar]
- Li, Z.; Zhao, S.; Yu, J.; Qiu, L.; Xiong, Q.; Deng, C. Research on Magnetic Field Measurement System Based on Distributed Magnetic Field Sensing and Numerical Integration Method. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
Publication Year | FDM | Publications |
---|---|---|
2021 | 15 | [2,3,28,29,30,31,32,33,34,35,36,37,38,39,40] |
2020 | 4 | [26,41,42,43] |
2019 | 15 | [10,22,24,44,45,46,47,48,49,50,51,52,53,54,55] |
2018 | 12 | [25,56,57,58,59,60,61,62,63,64,65,66] |
2017 | 2 | [67,68] |
Total | 48 |
PY | Ref | Printer Details | ST | Sensor Details | Material Used | Monitoring Type | Proposed Algorithm | Performance |
---|---|---|---|---|---|---|---|---|
2017 | [70] | Hyrel3D E5 Engine FDM | AE | PAC 2/4/6, PAC PCI-2 MISTRAS differential | N/A | filament state | HSMM | Acc.: 91.9% |
2018 | [60] | Hyrel3D E5 Engine FDM | AE | AE sensor, PAC 2/4/6, PAC PCI-2 | ABS | extruder state | CFSFDP | Block: 88% Semi-block: 79.53% |
2018 | [59] | Ultimater 2+ ASTM D 1708 | Accel, AE | PCB Piezotronics 353B03 Physical | ABS | bolt state | SVM | 87.5% |
2019 | [22] | delta 3D printer (SLD-BL600-6) | Attitude signal | BWT901 attitude sensor | N/A | joint bearing state | EFMSAE | N/A |
2019 | [23] | delta 3D printer | Attitude signal | BWT901 attitude sensor | N/A | joint bearing state | DFESN | Acc.: >90% |
2019 | [44] | delta 3D printer (SLD-BL600-6) | Attitude signal | BWT901 attitude sensor | N/A | joint bearing synchronous belt | ESN | 97.17% |
2019 | [46] | delta 3D printer (SLD-BL600-6) | Attitude signal | BWT901 attitude sensor Endevco piezoelectric vibration sensor | N/A | joint bearing synchronous belt | TSVM | 84.29% |
2019 | [45] | Markforged Two | Vibration signal | (7251A-500 1-channel & 65-10 3-channel) | Onyx | extruder state | BPNN, LS-SVM | normal: 95.56% warpage: 96% material stack: 100% |
2020 | [41] | delta 3D printer (SLD-BL600-6) | Attitude signal | BWT901 attitude sensor | N/A | joint bearing synchronous belt | LPPSVM | 93.49% |
2020 | [26] | N/A | Vibration signal | N/A | N/A | roller fault | BCNN | Acc.: 99.82% |
2021 | [38] | Hyrel3D printer | AE | Mistagroup AE sensor PAC 2/4/6, PAC PCI-2 | N/A | extruder state | Physics- constrained dictionary learning, K-SVD | normal (RMS): 4.6% material holding (RMS): 0% extruder blockade (RMS): 0% running out (RMS): 2.3% |
2021 | [39] | delta 3D printer (SLD-BL600-6) | Magnetic field | AK8963 electronic compass | N/A | joint bearing, synchronous belt | One-shot learning (OSL) | 92.07% |
2021 | [35] | Prusa i3 | Vibration signal | LSM330 accelerometer | N/A | extruder state | CNN | 97.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampedro, G.A.R.; Rachmawati, S.M.; Kim, D.-S.; Lee, J.-M. Exploring Machine Learning-Based Fault Monitoring for Polymer-Based Additive Manufacturing: Challenges and Opportunities. Sensors 2022, 22, 9446. https://doi.org/10.3390/s22239446
Sampedro GAR, Rachmawati SM, Kim D-S, Lee J-M. Exploring Machine Learning-Based Fault Monitoring for Polymer-Based Additive Manufacturing: Challenges and Opportunities. Sensors. 2022; 22(23):9446. https://doi.org/10.3390/s22239446
Chicago/Turabian StyleSampedro, Gabriel Avelino R., Syifa Maliah Rachmawati, Dong-Seong Kim, and Jae-Min Lee. 2022. "Exploring Machine Learning-Based Fault Monitoring for Polymer-Based Additive Manufacturing: Challenges and Opportunities" Sensors 22, no. 23: 9446. https://doi.org/10.3390/s22239446