Refinery 4.0, a Review of the Main Challenges of the Industry 4.0 Paradigm in Oil & Gas Downstream
Abstract
:1. Introduction
- High performance communications, wired and wireless [12] with 5G as the main future game-changing technology and including other key technologies such as interoperable communication standards (e.g., OPC-UA (OPC Unified Architecture (accessed on 10 October 2022) https://opcfoundation.org)) [13] or protocols such as TSN (Time-Sensitive Networking (accessed on 10 October 2022) https://1.ieee802.org/tsn/) [14,15]
- Additive Manufacturing [18]
- Data Science and Artificial Intelligence [26]
- Graphics and Media Technologies [27]
Manufacturing vs. Continuous Processes
- Machine Learning and Visual Analytics based process optimization (considering planning and scheduling as particular cases of processes), where Visual Analytics techniques introduce the human in the loop and allow the collaboration of human expert-knowledge and artificial intelligence.
- Fault prediction or identification of abnormal situations as well as new means of causality analysis.
- New knowledge/insight to experts, improving actions such as decision making, design, forensic analysis and especially orienting the human understanding within an otherwise unmanageable amount of data and set of complex models. Again, Visual Analytics techniques become fundamental to bridge the gap between Big Data/AI and humans.
Control, Operations, and Planning in the Oil & Gas Downstream Sector
2. Current Operation in Refineries
2.1. Control, Operations, and Planning
2.2. Integration of Machine Learning Models
3. Main Limitation towards Refinery 4.0
3.1. Industrial IoT
- Ubiquity: Most sensors and actuators of plants are based on wired communications. Hence, extensions and modifications require changes in infrastructures, increasing costs and terms.
- Data throughput flexibility: Data/control networks are mainly designed for reliability. Therefore, deterministic networks such as token-ring [72,73] are still used for this purpose. However, massive deployment of sensors and high and dynamic sampling rates require a technological leap where analytics services acquire data according to their specific needs. Moreover, the latency and jitter of each signal have to be dynamically controlled depending on the real-time needs of the plant.TSN and network slicing techniques [74] are required to achieve the needed QoS metrics.
- Scalability: Massive deployment of sensors requires high-density networks, but this circumstance is unusual in real industrial cases.
- Reliability: One of the main characteristics of Industrial IoT is the reliability it requires. Missing data can have a dramatic effect in prediction and control, and therefore, sensor and communication infrastructures must ensure the correct and on-time data delivery.
- Security: The monitoring and control network of oil refineries is the most critical communication infrastructure. Therefore, the security constraints follow the highest industry standards. Wireless communications broadly extend the risk surface and
3.2. Data Quality: Dealing with Uncertainty
3.2.1. Epistemic Uncertainty
- Lack of access to relevant variables: Variables that explain how the system is performing might not be the ones that explain how it will behave in the future (those that predictive models will need).
- Time miss-alignment of variables: The interdependence between physical variables (time-series) is often conditioned by a lag (e.g: propagation time). Uncertainties related to these lags can make variable relations completely unobservable.
- State of the system: Data observed at each moment respond to the the system’s state at this specific moment. Apart from operational data, state variables (parameters) might change due to degradation, element failures, physical modifications, etc. The uncertainty in identifying the state is the main source of conflicting data (same input variables producing different and non-compatible outputs).
3.2.2. Aleatoric Uncertainty
3.2.3. Data Quality Impact Cases
3.3. Experimental Environment
3.4. Adaptability to New ICT Technologies
4. Potential of Data Intelligence
4.1. Optimization
4.2. Anomaly Prediction
4.2.1. Predictive Maintenance
4.2.2. Operation Failure Prediction
4.2.3. Causality Analysis
4.3. Planning & Scheduling
5. Conclusions
Main Challenges and Opportunities for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khan, A.; Turowski, K. A perspective on industry 4.0: From challenges to opportunities in production systems. In Proceedings of the International Conference on Internet of Things and Big Data, Rome, Italy, 23–25 April 2016; pp. 441–448. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 6, 3987. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015, Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar] [CrossRef]
- Wan, J.; Cai, H.; Zhou, K. Industrie 4.0: Enabling technologies. In Proceedings of the 2015 International Conference on Intelligent Computing and Internet of Things, ICIT 2015, Harbin, China, 17–18 January 2015; IEEE: New York, NY, USA, 2015; pp. 135–140. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A Survey on Technologies, Applications and Open Research Issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Lu, H.; Guo, L.; Azimi, M.; Huang, K. Oil and Gas 4.0 Era: A Systematic Review and Outlook. Comput. Ind. 2019, 111, 68–90. [Google Scholar] [CrossRef]
- Ivanov, D.; Tang, C.S.; Dolgui, A.; Battini, D.; Das, A. Researchers’ perspectives on Industry 4.0: Multi-disciplinary analysis and opportunities for operations management. Int. J. Prod. Res. 2020, 59, 2055–2078. [Google Scholar] [CrossRef]
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2014, Cluj-Napoca, Romania, 22–24 May 2014; IEEE: New York, NY, USA, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Hassan, J.; Alhartomi, M.A.; Shvetsova, S.V.; Sahal, R.; Hawbani, A. Computing in the Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0. Drones 2022, 6, 177. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A review of industrial wireless networks in the context of Industry 4.0. Wirel. Netw. 2017, 23, 23–41. [Google Scholar] [CrossRef]
- Veichtlbauer, A.; Ortmayer, M.; Heistracher, T. OPC UA integration for field devices. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics, INDIN 2017, Emden, Germany, 24–26 July 2017; Institute of Electrical and Electronics Engineers Inc.: Emden, Germany, 2017; pp. 419–424. [Google Scholar] [CrossRef]
- Time-Sensitive Networking Task Group. IEEE 802.1 Time-Sensitive Networking Task Group; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Zezulka, F.; Marcon, P.; Bradac, Z.; Arm, J.; Benesl, T.; Vesely, I. Communication Systems for Industry 4.0 and the IIoT. IFAC-PapersOnLine 2018, 51, 150–155. [Google Scholar] [CrossRef]
- Viriyasitavat, W.; Da Xu, L.; Bi, Z.; Sapsomboon, A. Blockchain-Based Business Process Management (BPM) Framework for Service Composition in Industry 4.0. J. Intell. Manuf. 2020, 31, 1737–1748. [Google Scholar] [CrossRef]
- Tama, B.A.; Kweka, B.J.; Park, Y.; Rhee, K.H. A critical review of blockchain and its current applications. In Proceedings of the 2017 International Conference on Electrical Engineering and Computer Science: Sustaining the Cultural Heritage Toward the Smart Environment for Better Future, Palembang, Indonesia, 22–23 August 2017; IEEE: New York, NY, USA, 2017; pp. 109–113. [Google Scholar] [CrossRef]
- Dilberoglu, U.M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017, 11, 545–554. [Google Scholar] [CrossRef]
- Uhlemann, T.H.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Parrott, A.; Warshaw, L. Industry 4.0 and the Digital Twin; Deloitte University Press: New York, NY, USA, 2017; pp. 1–17. [Google Scholar]
- Srivastava, R.; Alsamhi, S.H.; Murray, N.; Devine, D. Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0. Sensors 2022, 22, 6802. [Google Scholar] [CrossRef]
- Contreras Masse, R.A.; Ochoa-Zezzatti, A.; García, V.; Mejía, J.; Gonzalez, S. Application of IoT with haptics interface in the smart manufacturing industry. Int. J. Comb. Optim. Probl. Inform. 2018, 10, 57–70. [Google Scholar]
- Gokalp, M.O.; Kayabay, K.; Akyol, M.A.; Eren, P.E.; Kocyigit, A. Big data for Industry 4.0: A conceptual framework. In Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence, CSCI 2016, Las Vegas, NV, USA, 15–17 December 2016; IEEE: New York, NY, USA, 2017; pp. 431–434. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, K.; Sun, H.; Zhang, Y.; Tao, F. Data and knowledge mining with big data towards smart production. J. Ind. Inf. Integr. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Oussous, A.; Benjelloun, F.Z.; Ait Lahcen, A.; Belfkih, S. Big Data Technologies: A Survey; Journal of King Saud University– Computer and Information Sciences, King Saud bin Abdulaziz University: Riyadh, Saudi Arabia, 2018; Volume 30, pp. 431–448. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Cao, N.; Tian, H.; Cheng, S. Applications of Artificial Intelligence in Oil and Gas Development. Arch. Comput. Methods Eng. 2020, 28, 937–949. [Google Scholar] [CrossRef]
- Posada, J.; Zorrilla, M.; Dominguez, A.; Simoes, B.; Eisert, P.; Stricker, D.; Rambach, J.; Dollner, J.; Guevara, M. Graphics and Media Technologies for Operators in Industry 4.0. IEEE Comput. Graph. Appl. 2018, 38, 119–132. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 2018, 6, 47980–48009. [Google Scholar] [CrossRef]
- Lezzi, M.; Lazoi, M.; Corallo, A. Cybersecurity for Industry 4.0 in the Current Literature: A Reference Framework. Comput. Ind. 2018, 103, 97–110. [Google Scholar] [CrossRef]
- Kiss, M.; Breda, G.; Muha, L. Information security aspects of Industry 4.0. Procedia Manuf. 2019, 32, 848–855. [Google Scholar] [CrossRef]
- Li, B.H.; Hou, B.C.; Yu, W.T.; Lu, X.B.; Yang, C.W. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.A.; Yang, S. Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 2016, 101, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Guo, L.; Li, J. Toward Greener and Smarter Process Industries. Engineering 2017, 3, 152–153. [Google Scholar] [CrossRef]
- Sahal, R.; Alsamhi, S.H.; Breslin, J.G.; Ali, M.I. Industry 4.0 towards Forestry 4.0: Fire Detection Use Case. Sensors 2021, 21, 694. [Google Scholar] [CrossRef]
- Elijah, O.; Ling, P.A.; Rahim, S.K.A.; Geok, T.K.; Arsad, A.; Kadir, E.A.; Abdurrahman, M.; Junin, R.; Agi, A.; Abdulfatah, M.Y. A Survey on Industry 4.0 for the Oil and Gas Industry: Upstream Sector. IEEE Access 2021, 9, 144438–144468. [Google Scholar] [CrossRef]
- Majstorović, V. Application of Industry 4.0 model in Oil and Gas companies. J. Eng. Manag. Compet. 2022, 12, 77–84. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.K.; Gosine, R.G.; James, L.A.; Silva, O.D.; Mann, G.K.I.; Warrian, P.J. Digital Twin for the Oil and Gas Industry: Overview, Research Trends, Opportunities, and Challenges. IEEE Access 2020, 8, 104175–104197. [Google Scholar] [CrossRef]
- Pandey, Y.N.; Rastogi, A.; Kainkaryam, S.; Bhattacharya, S.; Saputelli, L. Toward Oil and Gas 4.0. In Machine Learning in the Oil and Gas Industry; Apress: Berkeley, CA, USA, 2020; pp. 1–40. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Industry 4.0 applications in medical field: A brief review. Curr. Med. Res. Pract. 2019, 9, 102–109. [Google Scholar] [CrossRef]
- Gölzer, P.; Cato, P.; Amberg, M. Data Processing Requirements of Industry 4.0—Use Cases for Big Data Applications. In Proceedings of the ECIS 2015 Research-in-Progress Papers, Münster, Germany, 26–29 May 2015. [Google Scholar]
- Dettori, S.; Matino, I.; Colla, V.; Weber, V.; Salame, S. Neural network-based modeling methodologies for energy transformation equipment in integrated steelworks processes. Energy Procedia 2019, 158, 4061–4066. [Google Scholar] [CrossRef]
- Colla, V.; Matino, I.; Dettori, S.; Cateni, S.; Matino, R. Reservoir computing approaches applied to energy management in industry. Commun. Comput. Inf. Sci. 2019, 1000, 66–79. [Google Scholar] [CrossRef]
- Matino, I.; Dettori, S.; Colla, V.; Weber, V.; Salame, S. Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management. Appl. Energy 2019, 253. [Google Scholar] [CrossRef]
- Filipponi, M.; Rossi, F.; Presciutti, A.; De Ciantis, S.; Castellani, B.; Carpinelli, A. Thermal analysis of an industrial furnace. Energies 2016, 9, 833. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Qin, W.; Zhao, J. Smart Manufacturing for the Oil Refining and Petrochemical Industry. Engineering 2017, 3, 179–182. [Google Scholar] [CrossRef]
- Monedero, I.; Biscarri, F.; León, C.; Guerrero, J.I.; González, R.; Pérez-Lombard, L. Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant. Expert Syst. Appl. 2012, 39, 9860–9867. [Google Scholar] [CrossRef]
- Carroll, J.A.; Horne, R.N. Multivariate optimization of production systems. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 6–9 October 1991; pp. 317–328. [Google Scholar] [CrossRef]
- Alattas, A.M.; Grossmann, I.E.; Palou-Rivera, I. Integration of nonlinear crude distillation unit models in refinery planning optimization. Ind. Eng. Chem. Res. 2011, 50, 6860–6870. [Google Scholar] [CrossRef]
- Garcia, M.R.; Pitta, R.N.; Fischer, G.G.; Neto, E.R. Optimizing diesel production using advanced process control and dynamic simulation. In IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC: Munich, Germany, 2014; Volume 19, pp. 358–363. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.; Sá, V.; Bento, H.; Tavares, M.L.; Pinto, G.; Gomes, L.A. Hydrogen distribution network optimization: A refinery case study. J. Clean. Prod. 2008, 16, 1755–1763. [Google Scholar] [CrossRef]
- Lou, J.; Liao, Z.; Jiang, B.; Wang, J.; Yang, Y. Robust optimization of hydrogen network. Int. J. Hydrogen Energy 2014, 39, 1210–1219. [Google Scholar] [CrossRef]
- Sardashti Birjandi, M.R.; Shahraki, F.; Birjandi, M.S.; Nobandegani, M.S. Application of global optimization strategies to refinery hydrogen network. Int. J. Hydrogen Energy 2014, 39, 14503–14511. [Google Scholar] [CrossRef]
- Mudt, D.R.; Pedersen, C.C.; Jett, M.D.; Karur, S.; McIntyre, B.; Robinson, P.R. Refinery-Wide Optimization with Rigorous Models. In Practical Advances in Petroleum Processing; Springer: New York, NY, USA, 2007; pp. 705–727. [Google Scholar] [CrossRef]
- Neiro, S.M.; Pinto, J.M. Multiperiod optimization for production planning of petroleum refineries. Chem. Eng. Commun. 2005, 192, 62–88. [Google Scholar] [CrossRef]
- Joly, M.; Odloak, D.; Miyake, M.; Menezes, B.C.; Kelly, J.D. Refinery production scheduling toward Industry 4.0. Front. Eng. Manag. 2018, 5, 202–213. [Google Scholar] [CrossRef]
- Qian, F.; Zhong, W.; Du, W. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry. Engineering 2017, 3, 154–160. [Google Scholar] [CrossRef]
- Pandey, A.; Branson, D. 2020 Digital Operations study for energy, Oil and Gas; Technical Report; PricewaterhouseCoopers: London, UK, 2020. [Google Scholar]
- Campos, M.; Teixeira, H.; Liporace, F.; Gomes, M. Challenges and problems with advanced control and optimization technologies. In IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC: Munich, Germany, 2009; Volume 7, pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rojko, A. Industry 4.0 concept: Background and overview. Int. J. Interact. Mob. Technol. 2017, 11, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Mantravadi, S.; Møller, C. An overview of next-generation manufacturing execution systems: How important is MES for industry 4.0? Procedia Manuf. 2019, 30, 588–595. [Google Scholar] [CrossRef]
- Bueno, A.; Godinho Filho, M.; Frank, A.G. Smart production planning and control in the Industry 4.0 context: A systematic literature review. Comput. Ind. Eng. 2020, 149. [Google Scholar] [CrossRef]
- Parkash, S. Refinery Linear Programming Modeling. In Refining Processes Handbook; Gulf Professional Publishing: Houston, TX, USA, 2003; pp. 415–475. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, Y.; Li, C.; Han, Y.; Cui, Y.; Yu, B. Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature. Energy 2020, 194, 116851. [Google Scholar] [CrossRef]
- Keller, M.; Rosenberg, M.; Brettel, M.; Friederichsen, N. How Virtualization, Decentrazliation and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng. 2014, 8, 37–44. [Google Scholar]
- Mohammadpoor, M.; Torabi, F. Big Data analytics in oil and gas industry: An emerging trend. Petroleum 2019, 6, 321–328. [Google Scholar] [CrossRef]
- Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry. Int. J. Inf. Manag. 2019, 49, 502–519. [Google Scholar] [CrossRef]
- Maxim, A.; Copot, D.; Copot, C.; Ionescu, C.M. The 5w’s for control as part of industry 4.0: Why, what, where, who, and when—A PID and MPC control perspective. Inventions 2019, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Pitt, D. Standards for the token ring. IEEE Netw. 1987, 1, 19–22. [Google Scholar] [CrossRef]
- Follows, J. Token Ring Solutions; Technical Report; IBM—International Technical Support Organization: Armonk, NY, USA, 2000. [Google Scholar]
- Wu, Y.; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated Approaches for Smart Transportation, Smart Energy, and Smart Factory. IEEE Commun. Surv. Tutorials 2022, 24, 1175–1211. [Google Scholar] [CrossRef]
- Zawra, L.M.; Mansour, H.A.; Eldin, A.T.; Messiha, N.W. Utilizing the Internet of Things (IoT) Technologies in the Implementation of Industry 4.0. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, Cairo, Egypt, 9–11 September 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 798–808. [Google Scholar] [CrossRef]
- Aziz, A.; Schelén, O.; Bodin, U. A Study on Industrial IoT for the Mining Industry: Synthesized Architecture and Open Research Directions. IoT 2020, 1, 529–550. [Google Scholar] [CrossRef]
- Parks, R.C.; Rogers, E. Vulnerability Assessment for Critical Infrastructure Control Systems. IEEE Secur. Priv. Mag. 2008, 6, 37–43. [Google Scholar] [CrossRef]
- Leiras, A.; Ribas, G.; Hamacher, S.; Elkamel, A. Literature review of oil refineries planning under uncertainty. Int. J. Oil Gas Coal Technol. 2011, 4, 156–173. [Google Scholar] [CrossRef]
- Laranjeiro, N.; Soydemir, S.N.; Bernardino, J. A Survey on Data Quality: Classifying Poor Data. In Proceedings of the 2015 IEEE 21st Pacific Rim International Symposium on Dependable Computing, PRDC 2015, Zhangjiajie, China, 18–20 November 2016. [Google Scholar] [CrossRef]
- Blake, R.; Mangiameli, P. The effects and interactions of data quality and problem complexity on classification. J. Data Inf. Qual. 2011, 2, 1–28. [Google Scholar] [CrossRef]
- Kiureghian, A.D.; Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 2009, 31, 105–112. [Google Scholar] [CrossRef]
- Jerri, A.J. The Shannon Sampling Theorem—Its Various Extensions and Applications: A Tutorial Review. Proc. IEEE 1977, 65, 1565–1596. [Google Scholar] [CrossRef]
- Khodabakhsh, A.; Ari, I.; Bakir, M.; Ercan, A.O. Multivariate Sensor Data Analysis for Oil Refineries and Multi-mode Identification of System Behavior in Real-time. IEEE Access 2018, 6, 63489–64405. [Google Scholar] [CrossRef]
- Feder, M.; Merhav, N. Relations Between Entropy and Error Probability. IEEE Trans. Inf. Theory 1994, 40, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Hazen, B.T.; Boone, C.A.; Ezell, J.D.; Jones-Farmer, L.A. Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. Int. J. Prod. Econ. 2014, 154, 72–80. [Google Scholar] [CrossRef]
- Ahsan, M. Prediction of gasoline yield in a fluid catalytic cracking (FCC) riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD) approach. J. King Saud Univ. Eng. Sci. 2015, 27, 130–136. [Google Scholar] [CrossRef]
- Brodersen, K.H.; Gallusser, F.; Koehler, J.; Remy, N.; Scott, S.L. Inferring causal impact using bayesian structural time-series models. Ann. Appl. Stat. 2015, 9, 247–274. [Google Scholar] [CrossRef]
- Mousaei, A. Designing a Specific Model for Technology Transfer in Oil, Gas, and Petrochemical Sectors; Technical Report 2; Petroleoum University of Technology: Kut-e Abdollah, Iran, 2018. [Google Scholar] [CrossRef]
- Tracey, C.; Richard, H.; Andy, C.; Elfije, L.; Julie, A. The Intelligent Refinery. Technical Report; Accenture: Dublin, Ireland, 2019. [Google Scholar]
- Gupta, D.; Shah, M. A comprehensive study on artificial intelligence in oil and gas sector. Environ. Sci. Pollut. Res. 2021, 29, 50984–50997. [Google Scholar] [CrossRef]
- Khor, C.S.; Varvarezos, D. Petroleum refinery optimization. Optim. Eng. 2016, 18, 943–989. [Google Scholar] [CrossRef]
- Tuttle, J.F.; Vesel, R.; Alagarsamy, S.; Blackburn, L.D.; Powell, K. Sustainable NOx emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization. Control. Eng. Pract. 2019, 93, 104167. [Google Scholar] [CrossRef]
- Al-Jamimi, H.A.; BinMakhashen, G.M.; Deb, K.; Saleh, T.A. Multiobjective optimization and analysis of petroleum refinery catalytic processes: A review. Fuel 2021, 288, 119678. [Google Scholar] [CrossRef]
- Hundi, P.; Shahsavari, R. Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants. Appl. Energy 2020, 265. [Google Scholar] [CrossRef]
- Antomarioni, S.; Pisacane, O.; Potena, D.; Bevilacqua, M.; Ciarapica, F.E.; Diamantini, C. A predictive association rule-based maintenance policy to minimize the probability of breakages: Application to an oil refinery. Int. J. Adv. Manuf. Technol. 2019, 105, 3661–3675. [Google Scholar] [CrossRef]
- Antomarioni, S.; Bevilacqua, M.; Potena, D.; Diamantini, C. Defining a data-driven maintenance policy: An application to an oil refinery plant. Int. J. Qual. Reliab. Manag. 2019, 36, 77–97. [Google Scholar] [CrossRef]
- Sahal, R.; Alsamhi, S.H.; Breslin, J.G.; Brown, K.N.; Ali, M.I. Digital Twins Collaboration for Automatic Erratic Operational Data Detection in Industry 4.0. Appl. Sci. 2021, 11, 3186. [Google Scholar] [CrossRef]
- Pisacane, O.; Potena, D.; Antomarioni, S.; Bevilacqua, M.; Ciarapica, F.E.; Diamantini, C. Data-driven predictive maintenance policy based on multi-objective optimization approaches for the component repairing problem. Eng. Optim. 2020, 53, 1752–1771. [Google Scholar] [CrossRef]
- Helmiriawan, H.; Al-Ars, Z. Multi-target Regression Approach for Predictive Maintenance in Oil Refineries Using Deep Learning. Int. J. Neural Netw. Adv. Appl. 2019, 6, 18–24. [Google Scholar]
- Ren, Y. Optimizing Predictive Maintenance With Machine Learning for Reliability Improvement. ASCE-ASME J. Risk Uncert Engrg. Sys. Part B Mech. Engrg. 2021, 7, 030801. [Google Scholar] [CrossRef]
- Dangut, M.D.; Skaf, Z.; Jennions, I.K. Handling imbalanced data for aircraft predictive maintenance using the BACHE algorithm. Appl. Soft Comput. 2022, 123, 108924. [Google Scholar] [CrossRef]
- Han, Y.; Ding, N.; Geng, Z.; Wang, Z.; Chu, C. An optimized long short-term memory network based fault diagnosis model for chemical processes. J. Process. Control. 2020, 92, 161–168. [Google Scholar] [CrossRef]
- Shao, B.; Hu, X.; Bian, G.; Zhao, Y. A Multichannel LSTM-CNN Method for Fault Diagnosis of Chemical Process. Math. Probl. Eng. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.R.; Khan, N. Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability. Mach. Learn. Knowl. Extr. 2021, 3, 525–541. [Google Scholar] [CrossRef]
- den Broeck, G.V.; Lykov, A.; Schleich, M.; Suciu, D. On the Tractability of SHAP Explanations. J. Artif. Intell. Res. 2022, 74, 851–886. [Google Scholar] [CrossRef]
- Tissaoui, K.; Zaghdoudi, T.; Hakimi, A.; Nsaibi, M. Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling. Comput. Econ. 2022, 1–25. [Google Scholar] [CrossRef]
- Joly, M. Refinery production planning and scheduling: The refining core business. Braz. J. Chem. Eng. 2012, 29, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Heckl, I.; Borbás, P.I.; Szombathelyi, B.; Frits, M. Simulator for Distribution Scheduling in Downstream. MACRo 2015 2015, 1, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Ribas, G.P.; Hamacher, S.; Street, A. Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming. Int. Trans. Oper. Res. 2010, 17, 777–796. [Google Scholar] [CrossRef]
- Wang, C.; Peng, X.; Shang, C.; Fan, C.; Zhao, L.; Zhong, W. A deep learning-based robust optimization approach for refinery planning under uncertainty. Comput. Chem. Eng. 2021, 155, 107495. [Google Scholar] [CrossRef]
- Mitchell, M. Artificial Intelligence: A Guide for Thinking Humans; Farrar, Straus and Giroux: New York, NY, USA, 2019; pp. 100–104. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaizola, I.G.; Quartulli, M.; Unzueta, E.; Goicolea, J.I.; Flórez, J. Refinery 4.0, a Review of the Main Challenges of the Industry 4.0 Paradigm in Oil & Gas Downstream. Sensors 2022, 22, 9164. https://doi.org/10.3390/s22239164
Olaizola IG, Quartulli M, Unzueta E, Goicolea JI, Flórez J. Refinery 4.0, a Review of the Main Challenges of the Industry 4.0 Paradigm in Oil & Gas Downstream. Sensors. 2022; 22(23):9164. https://doi.org/10.3390/s22239164
Chicago/Turabian StyleOlaizola, Igor G., Marco Quartulli, Elias Unzueta, Juan I. Goicolea, and Julián Flórez. 2022. "Refinery 4.0, a Review of the Main Challenges of the Industry 4.0 Paradigm in Oil & Gas Downstream" Sensors 22, no. 23: 9164. https://doi.org/10.3390/s22239164