Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
Abstract
:1. Introduction
2. Theoretical Basis
2.1. VMD
2.2. WGWOA
2.3. VMD Optimized Based on the WGWOA Algorithm
2.4. Fault Diagnosis Model Based on Optimized SVM
3. Fault Diagnosis of Rolling Bearing Based on WGWOA-VMD-SVM
4. Experimental Research Based on Public Data Set
4.1. Test Data Acquisition
4.2. Signal Processing and Feature Extraction
4.3. Fault Diagnosis Results and Comparative Analysis
5. Laboratory Test Research
5.1. Sources of Test Data
5.2. Preprocessing of Test Data and Feature Extraction
5.2.1. Data Preprocessing
5.2.2. Signal Decomposition and Feature Extraction Based on WGWOA-VMD
5.2.3. Feature Extraction
5.3. Fault Diagnosis Based on WGWOA-Optimized SVM
5.4. Comparative Analysis with Other Methods
6. Conclusions
- The test results of two cases show that WGWOA-optimized VMD can properly suppress modal aliasing and that WGWOA-optimized SVM enhances the accuracy and self-adaptability of model classification. The average accuracy of this method in five repeated tests were 100.00% and 99.75%. Compared with other existing fault diagnosis methods, this method has many advantages, such as high accuracy and stable performance, to provide an effective new method for the existing fault diagnosis technology;
- Compared with other optimization algorithms, the proposed WGWOA algorithm has good performance in terms of optimization accuracy, optimization efficiency, and algorithm convergence. The training process of this method is simple and fast, and the diagnostic accuracy after training is significantly higher than other traditional methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, C.B.; Li, H.K.; Zhao, X.W. Weak characteristic determination for blade crack of centrifugal compressors based on underdetermined blind source separation. Measurement 2018, 128, 545–557. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, Q.; Liu, Z.W.; He, Z.J. An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis. ISA Trans. 2019, 71, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xiang, J.W. Remain useful life prediction of rolling bearings based on exponential model optimized by gradient method. Measurement 2021, 176, 109161. [Google Scholar] [CrossRef]
- Islam, M.; Prosvirin, A.; Kim, J. Data-driven prognostic scheme for rolling-element bearings using a new health index and variants of least-square support vector machines. Mech. Syst. Signal Process. 2021, 160, 107853. [Google Scholar] [CrossRef]
- Li, P.N.; Lei, Y.; Lin, J.S.; Ding, X. An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans. Ind. Electron. 2015, 62, 7762–7773. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yao, L.G.; Chen, G.; Ding, J.X. Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals. ISA Trans. 2021, 114, 470–484. [Google Scholar] [CrossRef]
- Yang, J.S.; Peng, Y.Z.; Xie, J.S.; Wang, P.X. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification. Sensors 2022, 22, 4549. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, M.H.; Bartos, P.; Bohata, A. Dynamic engagement characteristics of wet clutch based on hydro-mechanical continuously variable transmission. J. Cent. South Univ. 2021, 28, 1377–1389. [Google Scholar] [CrossRef]
- Xiao, C.A.; Tang, H.S.; Ren, Y.; Kumar, A. Fuzzy entropy assisted singular spectrum decomposition to detect bearing faults in axial piston pump. Alex. Eng. J. 2022, 61, 5869–5885. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.N.; Wang, Q.; Han, K. Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM. Measurement 2021, 172, 108901. [Google Scholar] [CrossRef]
- Xiao, M.H.; Liao, Y.B.; Bartos, P.; Filip, M.; Geng, G.S.; Jiang, Z.W. Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm. Multimed. Tools Appl. 2022, 81, 1567–1587. [Google Scholar] [CrossRef]
- Chen, D.N.; Zhang, Y.D.; Yao, C.Y.; Sun, F.; Zhou, N.Y. Fault diagnosis based on FVMD multi-scale permutation entropy and GK fuzzy clustering. J. Mech. Eng. 2018, 54, 16–27. [Google Scholar] [CrossRef]
- Peng, Z.; Chu, F.; He, Y. Vibration signal analysis and feature extraction based on reassigned wavelet scalogram. J. Sound Vib. 2002, 253, 1087–1100. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, B.T.; Ma, G.J.; Wu, D.R.; Yuan, Y. Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomputing 2020, 409, 35–45. [Google Scholar] [CrossRef]
- Zuo, L.; Xu, F.J.; Zhang, C.H.; Xiahou, T.F.; Liu, Y. A multi-layer spiking neural network-based approach to bearing fault diagnosis. Reliab. Eng. Syst. Saf. 2022, 225, 108561. [Google Scholar] [CrossRef]
- Sun, Y.J.; Li, S.H.; Wang, X.H. Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image. Measurement 2021, 176, 109100. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Li, C.L.; Jiang, Y.Q.; Sun, L.; Zhao, R.B.; Yan, K.F.; Wang, W.H. Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model. J. Clean. Prod. 2022, 354, 131724. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, K.H.; Zhao, G.J.; Zhu, J.Y. Efficient partial discharge signal denoising method via adaptive variational modal decomposition for infrared detectors. Infrared Phys. Technol. 2022, 125, 104230. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Jiang, S.; Jin, X.; Wei, Y. Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index. Sensors 2022, 22, 3889. [Google Scholar] [CrossRef]
- Lin, Y.; Xiao, M.H.; Liu, H.J.; Li, Z.L.; Zhou, S.; Xu, X.M.; Wang, D.C. Gear fault diagnosis based on CS-improved variational mode decomposition and probabilistic neural network. Measurement 2022, 192, 110913. [Google Scholar] [CrossRef]
- Ayman, Y.; Mohammed, E.; Abdelhalim, Z. The role of artificial intelligence in photovoltaic systems design and control: A review. Renew. Sustain. Energy Rev. 2017, 78, 72–79. [Google Scholar]
- Wei, W.; Cong, R.; Li, Y.T.; Abraham, A.; Yang, C.Y.; Chen, Z.T. Prediction of tool wear based on GA–BP neural network. Proc. Inst. Mech. Eng. 2022, 236, 1564–1573. [Google Scholar] [CrossRef]
- Wei, W.; Shang, Y.; Peng, Y.; Cong, R. Prediction Model of Sound Signal in High-Speed Milling of Wood–Plastic Composites. Materials 2022, 15, 3838. [Google Scholar] [CrossRef]
- Xiao, M.H.; Zhang, W.; Wen, K.; Zhu, Y.; Yiliyasi, Y. Fault diagnosis based on BP neural network optimized by beetle algorithm. Chin. J. Mech. Eng. 2021, 34, 119. [Google Scholar] [CrossRef]
- Mahdi, M.; Mahdieh, G.; Hossein, M. A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM. Knowl. Based Syst. 2021, 222, 106988. [Google Scholar]
- Wumaier, T.; Xu, C.; Guo, H.Y.; Jin, Z.J.; Zhou, H.J. Fault Diagnosis of Wind Turbines Based on a Support Vector Machine Optimized by the Sparrow Search Algorithm. IEEE Access 2021, 9, 69307–69315. [Google Scholar]
- Chen, H.; Li, S. Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors 2022, 22, 3647. [Google Scholar] [CrossRef]
- Van, M.; Kang, H.J. Bearing defect classification based on individual wavelet local fisher discriminant analysis with particle swarm optimization. IEEE Trans. Ind. Inform. 2015, 12, 124–135. [Google Scholar] [CrossRef]
- Hou, Y.; Gao, H.; Wang, Z.; Du, C. Improved Grey Wolf Optimization Algorithm and Application. Sensors 2022, 22, 3810. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, C.; Liu, Y.; Liu, J.H. Correlation analysis of runway icing parameters and improved PSO-LSSVM icing prediction. Cold Reg. Sci. Technol. 2022, 193, 103415. [Google Scholar] [CrossRef]
- García Nietoa, P.J.; García-Gonzaloa, E.; Sánchez Lasherasb, F.; De Cos Juezc, F.J. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 2015, 138, 219–231. [Google Scholar] [CrossRef]
- Dong, Z.L.; Zheng, J.D.; Huang, S.Q.; Pan, H.Y.; Liu, Q.Y. Time-shift multi-scale weighted permutation entropy and GWO-SVM based fault diagnosis approach for rolling bearing. Entropy 2019, 21, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.B.; Zhang, Y.Y.; Liu, J.F.; Wei, H.; Zhao, J.H.; Liao, R.J. A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers. Electr. Power Syst. Res. 2018, 155, 196–205. [Google Scholar] [CrossRef]
- He, B.H.; Jia, B.Y.; Zhao, Y.H.; Wang, X.; Wei, M.; Dietzel, R. Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm. Agric. Water Manag. 2022, 267, 107618. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, G.; Reza, J.Y.; Amir, H.D. Building energy optimization using Grey Wolf Optimizer (GWO). Case Stud. Therm. Eng. 2021, 27, 101250. [Google Scholar]
- Song, X.H.; Tang, L.; Zhao, S.T.; Zhang, X.Q.; Li, L.; Huang, J.Q.; Cai, W. Grey Wolf Optimizer for parameter estimation in surface waves. Soil Dyn. Earthq. Eng. 2015, 75, 147–157. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Rajabi, S.; Azari, M.S.; Santini, S.; Flammini, F. Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier. Expert Syst. Appl. 2022, 206, 117754. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, C.S.; Wang, X.B.; Wu, H.M. A novel fault diagnosis procedure based on improved symplectic geometry mode decomposition and optimized SVM. Measurement 2021, 173, 108644. [Google Scholar] [CrossRef]
- Zhou, J.M.; Wang, F.L.; Zhang, C.C.; Zhang, L.; Yin, W.H.; Li, P. An intelligent method for rolling bearing evaluation using feature optimization and GA-SVM. J. Vib. Shock 2021, 40, 227–234. [Google Scholar]
- Li, Y.H. Research on Dynamic Characteristics Modeling and Simulation for a Faulty Ball Bearing under Variable Speed and Load; East China Jiaotong University: Nanchang, China, 2006. [Google Scholar]
Fault Types | Load/(hp) | Number of Training Samples | Number of Test Samples | Sample Number |
---|---|---|---|---|
Normal | 0 | 45 | 15 | 1 |
1 | ||||
2 | ||||
Inner ring fault (fault diameter 0.1778 mm) | 0 | 45 | 15 | 2 |
1 | ||||
2 | ||||
Inner ring fault (fault diameter 0.3556 mm) | 0 | 45 | 15 | 3 |
1 | ||||
2 | ||||
Inner ring fault (fault diameter 0.5334 mm) | 0 | 45 | 15 | 4 |
1 | ||||
2 | ||||
Outer ring fault (fault diameter 0.1778 mm) | 0 | 45 | 15 | 5 |
1 | ||||
2 | ||||
Outer ring fault (fault diameter 0.3556 mm) | 0 | 45 | 15 | 6 |
1 | ||||
2 | ||||
Outer ring fault (fault diameter 0.5334 mm) | 0 | 45 | 15 | 7 |
1 | ||||
2 | ||||
Rolling element fault (fault diameter 0.1778 mm) | 0 | 45 | 15 | 8 |
1 | ||||
2 | ||||
Rolling element fault (fault diameter 0.3556 mm) | 0 | 45 | 15 | 9 |
1 | ||||
2 | ||||
Rolling element fault (fault diameter 0.5334 mm) | 0 | 45 | 15 | 10 |
1 | ||||
2 |
Fault Types | Optimum Solutions | |
---|---|---|
σ | K | |
Normal | 2012 | 4 |
Inner ring fault (fault diameter 0.1778 mm) | 1999 | 4 |
Inner ring fault (fault diameter 0.3556 mm) | 1982 | 4 |
Inner ring fault (fault diameter 0.5334 mm) | 2003 | 4 |
Outer ring fault (fault diameter 0.1778 mm) | 1996 | 4 |
Outer ring fault (fault diameter 0.3556 mm) | 1988 | 4 |
Outer ring fault (fault diameter 0.5334 mm) | 1999 | 4 |
Rolling element fault (fault diameter 0.1778 mm) | 2007 | 4 |
Rolling element fault (fault diameter 0.3556 mm) | 1987 | 4 |
Rolling element fault (fault diameter 0.5334 mm) | 1989 | 4 |
Optimum parameter combination | 1996.20 | 4 |
Methods | Accuracy (%) | |||||
---|---|---|---|---|---|---|
Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | Average | |
VMD-SVM | 97.33 | 96.00 | 98.66 | 94.00 | 97.33 | 96.66 |
WGWOA-VMD-SVM | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Types | Specifications | Outer Diameter/mm | Inside Diameter/mm | Thickness/mm | Rollers Number | Roller Diameter/mm | Pitch/mm | Contact Angle/° |
---|---|---|---|---|---|---|---|---|
Cylindrical roller bearing | N205EM | 52 | 25 | 15 | 13 | 6.5 | 38.5 | 0 |
Fault Types | Optimum Solutions | Labels | |
---|---|---|---|
σ | K | ||
Normal | 4835 | 6 | 1 |
Inner ring crack | 4862 | 6 | 2 |
Outer ring crack | 4822 | 6 | 3 |
Roller crack | 4798 | 6 | 4 |
Fault Types | Permutation Entropy | |||||
---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | |
Normal | 1.5309 | 1.0415 | 1.5753 | 0.8844 | 1.3019 | 0.1141 |
1.3952 | 1.1453 | 1.7707 | 1.2923 | 1.3228 | 0.1434 | |
1.4194 | 1.0538 | 1.8166 | 0.9955 | 1.1806 | 0.1031 | |
1.2777 | 1.0539 | 1.8729 | 0.9517 | 1.0573 | 0.1127 | |
1.3725 | 1.1848 | 1.9700 | 1.0411 | 1.3821 | 0.1062 | |
Inner ring crack | 1.4377 | 1.6552 | 1.5502 | 0.8704 | 0.8514 | 0.1254 |
1.4575 | 1.3057 | 2.0078 | 0.7103 | 0.8670 | 0.1349 | |
1.3202 | 1.5059 | 1.8016 | 0.8518 | 1.0440 | 0.1048 | |
1.2304 | 1.4806 | 1.8627 | 0.9084 | 1.0683 | 0.1600 | |
1.4751 | 1.4448 | 1.5748 | 0.7900 | 0.8558 | 0.1218 | |
Outer ring crack | 2.4565 | 2.2353 | 2.2428 | 1.5334 | 2.6846 | 0.3680 |
1.7272 | 2.5163 | 2.0670 | 1.7688 | 2.7149 | 0.3893 | |
1.7458 | 2.4905 | 2.2135 | 1.5629 | 2.6006 | 0.4480 | |
1.7611 | 2.4239 | 2.1152 | 1.4379 | 2.5880 | 0.4388 | |
1.7432 | 2.4397 | 2.2388 | 1.5594 | 2.6276 | 0.4215 | |
Roller crack | 0.8964 | 1.4693 | 1.9504 | 1.3214 | 1.2628 | 0.2148 |
1.2302 | 1.1797 | 2.1101 | 0.9923 | 1.7222 | 0.3233 | |
1.1171 | 1.3704 | 1.9537 | 0.8106 | 1.4210 | 0.2868 | |
1.2216 | 0.8641 | 2.0169 | 0.9422 | 1.4858 | 0.2865 | |
1.3158 | 1.1262 | 1.8119 | 0.9066 | 1.5658 | 0.2998 |
Sample Types | Sample Point Label of Diagnostic Error | Actual Fault Types | Diagnostic Fault Types | Diagnostic Accuracy |
---|---|---|---|---|
Training sample | 57 | Normal | Inner ring crack | 96.67% |
63 | Normal | Inner ring crack | ||
71 | Roller crack | Normal | ||
79 | Roller crack | Inner ring crack | ||
Test sample | - | - | - | 100.00% |
Methods | Accuracy (%) | |||||
---|---|---|---|---|---|---|
Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | Average | |
BPNN | 72.50 | 61.25 | 63.75 | 52.50 | 76.25 | 65.25 |
SVM | 76.25 | 76.25 | 72.50 | 80.00 | 76.25 | 76.25 |
EMD-SVM | 80.00 | 82.50 | 76.25 | 73.75 | 81.25 | 78.75 |
VMD-SVM | 87.50 | 87.50 | 90.00 | 81.25 | 85.00 | 86.25 |
WOA-VMD-SVM | 96.25 | 92.50 | 93.75 | 95.00 | 93.75 | 94.25 |
GWO-VMD-SVM | 96.25 | 96.25 | 98.75 | 98.75 | 92.50 | 96.50 |
WGWOA-VMD-SVM | 100.00 | 100.00 | 98.75 | 100.00 | 100.00 | 99.75 |
Optimization Algorithms | Optimal Solutions | |
---|---|---|
c | g | |
WOA | 4.23 | 0.01 |
GWO | 15.32 | 0.22 |
WGWOA | 25.78 | 2.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xiao, M.; Niu, Y.; Ji, G. Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM. Sensors 2022, 22, 6281. https://doi.org/10.3390/s22166281
Zhou J, Xiao M, Niu Y, Ji G. Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM. Sensors. 2022; 22(16):6281. https://doi.org/10.3390/s22166281
Chicago/Turabian StyleZhou, Junbo, Maohua Xiao, Yue Niu, and Guojun Ji. 2022. "Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM" Sensors 22, no. 16: 6281. https://doi.org/10.3390/s22166281
APA StyleZhou, J., Xiao, M., Niu, Y., & Ji, G. (2022). Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM. Sensors, 22(16), 6281. https://doi.org/10.3390/s22166281