Indoor MIMO-VLC Using Angle Diversity Transmitters
Abstract
:1. Introduction
2. System Model
3. MIMO-VLC Using ADTs
3.1. Structure of ADT
3.2. LOS Channel Gain Using ADT
3.3. Average Achievable Rate
4. Simulation Results
5. Discussions on Practical Implementation of ADTs in MIMO-VLC Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco, U. Cisco Annual Internet Report (2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Le Minh, H.; Ghassemlooy, Z.; O’Brien, D.; Faulkner, G. Indoor gigabit optical wireless communications: Challenges and possibilities. In Proceedings of the 12th International Conference on Transparent Optical Networks (ICTON), Munich, Germany, 27 June–1 July 2010; pp. 1–6. [Google Scholar]
- Grubor, J.; Randel, S.; Langer, K.D.; Walewski, J.W. Broadband information broadcasting using LED-based interior lighting. J. Lightw. Technol. 2008, 26, 3883–3892. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.I.; Abdallah, M.M.; Qaraqe, K.A. Hybrid radio-visible light downlink performance in RF sensitive indoor environments. In Proceedings of the sixth International Symposium on Communications, Control and Signal Processing (ISCCSP), Athens, Greece, 21–23 May 2014; pp. 81–84. [Google Scholar]
- Armstrong, J.; Sekercioglu, Y.A.; Neild, A. Visible light positioning: A roadmap for international standardization. IEEE Commun. Mag. 2013, 51, 68–73. [Google Scholar]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tuts. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Wu, D.; Zhong, W.D.; Ghassemlooy, Z.; Chen, C. Short-range visible light ranging and detecting system using illumination light emitting diodes. IET Optoelectron. 2016, 10, 94–99. [Google Scholar] [CrossRef]
- Zeng, L.; O’Brien, D.C.; Le Minh, H.; Faulkner, G.E.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 2009, 27, 1654–1662. [Google Scholar]
- Fath, T.; Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 2013, 61, 733–742. [Google Scholar] [CrossRef]
- Lian, J.; Brandt-Pearce, M. Multiuser MIMO indoor visible light communication system using spatial multiplexing. J. Lightw. Technol. 2017, 35, 5024–5033. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Wu, D. On the coverage of multiple-input multiple-output visible light communications [Invited]. J. Opt. Commun. Netw. 2017, 9, D31–D41. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D. Hybrid space-frequency domain pre-equalization for DC-biased optical orthogonal frequency division multiplexing based imaging multiple-input multiple-output visible light communication systems. Opt. Eng. 2017, 56, 036102. [Google Scholar] [CrossRef]
- Deng, X.; Fan, W.; Cunha, T.B.; Ma, S.; Chen, C.; Dong, Y.; Zou, X.; Yan, L.; Linnartz, J.P. Two-dimensional power allocation for optical MIMO-OFDM systems over low-pass channels. IEEE Trans. Veh. Technol. 2022, 71, 7244–7257. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Du, P.; Zhong, W.D.; Alphones, A.; Yang, Y.; Deng, X. User-centric MIMO techniques for indoor visible light communication systems. IEEE Syst. J. 2020, 14, 3202–3213. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, X.; Fu, S.; Jian, X.; Liu, M.; Yang, H.; Alphones, A.; Fu, H.Y. OFDM-based generalized optical MIMO. J. Lightw. Technol. 2021, 39, 6063–6075. [Google Scholar] [CrossRef]
- Tsiropoulou, E.E.; Gialagkolidis, I.; Vamvakas, P.; Papavassiliou, S. Resource allocation in visible light communication networks: NOMA vs OFDMA transmission techniques. In Proceedings of the International Conference on Ad-Hoc Networks and Wireless (ADHOC-NOW), Lille, France, 4–6 July 2016; pp. 32–46. [Google Scholar]
- Chen, C.; Zhong, W.D.; Yang, H.; Du, P. On the performance of MIMO-NOMA-based visible light communication systems. IEEE Photon. Technol. Lett. 2018, 30, 307–310. [Google Scholar] [CrossRef]
- Nuwanpriya, A.; Ho, S.W.; Chen, C.S. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users. IEEE J. Sel. Areas Commun. 2015, 33, 1780–1792. [Google Scholar] [CrossRef]
- Mmbaga, P.F.; Thompson, J.; Haas, H. Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors. J. Lightw. Technol. 2016, 34, 1254–1266. [Google Scholar] [CrossRef] [Green Version]
- Hosney, M.; Selmy, H.A.; Srivastava, A.; Elsayed, K.M. Interference mitigation using angular diversity receiver with efficient channel estimation in MIMO VLC. IEEE Access 2020, 8, 54060–54073. [Google Scholar] [CrossRef]
- Dixit, V.; Kumar, A. Performance analysis of angular diversity receiver based MIMO–VLC system for imperfect CSI. J. Opt. 2021, 23, 085701. [Google Scholar] [CrossRef]
- Yin, L.; Wu, X.; Haas, H. Indoor visible light positioning with angle diversity transmitter. In Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar]
- Chen, Z.; Basnayaka, D.A.; Haas, H. Space division multiple access for optical attocell network using angle diversity transmitters. J. Lightw. Technol. 2017, 35, 2118–2131. [Google Scholar] [CrossRef]
- Dixit, V.; Kumar, A. Performance analysis of indoor visible light communication system with angle diversity transmitter. In Proceedings of the IEEE fourth Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; pp. 1–5. [Google Scholar]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Room dimension | 4 m × 4 m × 3 m |
Height of receiving plane | 0.85 m |
PD spacing | 10 cm |
Semi-angle at half power of center LED | |
Semi-angle at half power of side LED | |
Half-angle FOV photodetector | |
Gain of optical filter | 1 |
Refractive index of optical lens | 1.5 |
Responsivity of the PD | 1 A/W |
Radius of LED | 0.5 cm |
Gap between center and side LED | 5 cm |
Active area of PD | 1 |
Signal bandwidth | 10 MHz |
Noise PSD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, B.; Wen, W.; Liu, M.; Zhang, Y.; Chen, C. Indoor MIMO-VLC Using Angle Diversity Transmitters. Sensors 2022, 22, 5436. https://doi.org/10.3390/s22145436
Qin B, Wen W, Liu M, Zhang Y, Chen C. Indoor MIMO-VLC Using Angle Diversity Transmitters. Sensors. 2022; 22(14):5436. https://doi.org/10.3390/s22145436
Chicago/Turabian StyleQin, Biao, Wanli Wen, Min Liu, Yanchao Zhang, and Chen Chen. 2022. "Indoor MIMO-VLC Using Angle Diversity Transmitters" Sensors 22, no. 14: 5436. https://doi.org/10.3390/s22145436
APA StyleQin, B., Wen, W., Liu, M., Zhang, Y., & Chen, C. (2022). Indoor MIMO-VLC Using Angle Diversity Transmitters. Sensors, 22(14), 5436. https://doi.org/10.3390/s22145436