Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis
Abstract
:1. Introduction
PARAFAC Algorithm
- Time–frequency decomposition until convergence.
- Find out the number of factors
- Initialize the load matrices B and
- A is estimated by the least square regression algorithm, that is,
- Complete the same step for and
- Continuously measure from step (3) before convergence.
2. Optimization of SVM parameters with Improved Particle Swarm Optimization (IPSO)
2.1. Principle of SVM
2.2. Algorithm and Theory of IPSO
3. The Experimental System of Slurry Pump
4. CWT-PARAFAC-IPSO-SVM for Fault Diagnosis
4.1. Multi-Channel Vibration Signal Analysis with PARAFAC
4.2. Energy Feature Selection by WPD
4.3. Parameter Optimization of SVM without IPSO by WPA Energy
4.4. Optimization of SVM Multi-Classifier without PSO by PARAFAC
4.5. SVM Optimization with IPSO
5. PARAFAC-SVM with IPSO Optimization for Multi-Channel Data Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106578. [Google Scholar] [CrossRef]
- Muralidharan, V.; Sugumaran, V.; Sakthivel, N.R. Wavelet decomposition and support vector machine for fault diagnosis of monoblock centrifugal pump. Int. J. Data Anal. Tech. Strateg. 2011, 3, 159–177. [Google Scholar] [CrossRef]
- Khan, M.M.; Tse, P.W.; Trappey, A.J.C. Development of a Novel Methodology for Remaining Useful Life Prediction of Industrial Slurry Pumps in the Absence of Run to Failure Data. Sensors 2021, 21, 8420. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, Y.U.; Tang, G.; Xin, C.; Zhang, T. Early weak fault diagnosis of rolling bearing based on multilayer reconstruction filter. Shock. Vib. 2021, 2021. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Y.; Li, X.; Cheng, J. Adaptive periodic mode decomposition and its application in rolling bearing fault diagnosis. Mech. Syst. Signal Process. 2021, 161. [Google Scholar] [CrossRef]
- Hanxin, C. Intelligent Model-based Integrity Assessment of Nonstationary Mechanical System. J. Web Eng. 2021, 20, 253–280. [Google Scholar]
- Chen, H.; Huang, W.; Huang, J.; Cao, C.; Yang, L.; He, Y.; Zeng, L. Multi-fault condition monitoring of slurry pump with principle component analysis and sequential hypothesis test. Int. J. Patt. Recogn. Artif. Intell. 2019, 34. [Google Scholar] [CrossRef]
- Lin, S.L. The Application of Machine Learning ICA-VMD in an Intelligent Diagnosis System in a Low SNR Environment. Sensors 2021, 21, 8344. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xu, H.; Ragulskis, M.; Cao, M.; Ostachowicz, W. A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure. Sensors 2020, 20, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Li, Z.; Jin, Y.; Zhang, X. Blind source separation of multi mixed vibration signal based on parallel factor analysis. Progn. Syst. Health Manag. 2017, 7, 1. [Google Scholar]
- Nguyen, P.; Tran, D.; Vo, T.; Huang, X.; Ma, W.; Phung, D. EEG-Based Age and Gender Recognition Using Tensor Decomposition and Speech Features. In Proceedings of the International Conference on Neural Information, Lake Tahoe, NV, USA, 5–10 December 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 632–639. [Google Scholar]
- Mingming, L.; Menglong, L.; Hanxin, C.; Yao, K. Fault diagnosis method of centrifugal pump based on PARAFAC-SVM. In Proceedings of the International Workshop on Automation, Control, and Communication Engineering, Hohhot, China, 7–9 August 2021; p. 1192902. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Li, F.; Zhang, K.; Lv, H.; He, S.; Xu, E. Intelligent fault diagnosis of machines with small and imbalanced data: A state-of-the-art review and possible extensions. ISA Trans. 2022, 119, 152–171. [Google Scholar] [CrossRef] [PubMed]
- Djeziri, M.A.; Djedidi, O.; Morati, N.; Seguin, J.-L.; Bendahan, M.; Contaret, T. A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Appl. Intell. 2021, 52, 6065–6078. [Google Scholar] [CrossRef]
- Tun, W.; Wong, J.K.W.; Ling, S.H. Hybrid Random Forest and Support Vector Machine Modeling for HVAC Fault Detection and Diagnosis. Sensors 2021, 21, 8163. [Google Scholar] [CrossRef]
- Długosz, Z.; Rajewski, M.; Długosz, R.; Talaśka, T. A Novel, Low Computational Complexity, Parallel Swarm Algorithm for Application in Low-Energy Devices. Sensors 2021, 21, 8449. [Google Scholar] [CrossRef]
- Mohamed, A.; Mohamed, R.; Elkomy, O.; Abouhawwash, M. Recent metaheuristic algorithms with genetic operators for high-dimensional knapsack instances: A comparative study. Comput. Ind. Eng. 2022, 166. [Google Scholar] [CrossRef]
- Bacanin, N.; Zivkovic, M.; Bezdan, T.; Venkatachalam, K.; Abouhawwash, M. Modified firefly aogorithm for workflow scheduling in cloud-edge environment. Neural Comput. Appl. 2022. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, A.; Tang, B.; Xu, H. An Indoor Navigation Algorithm Using Multi-Dimensional Euclidean Distance and an Adaptive Particle Filter. Sensors 2021, 21, 8228. [Google Scholar] [CrossRef]
- Chen, H.; Fang, L.; Liang Fan, D.; Huang, W.; Huang, J.; Cao, C.; Yang, L.; He, Y.; Zeng, L. Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis. Int. J. Patt. Recogn. Artif. Intell. 2019, 34. [Google Scholar] [CrossRef]
- Hag, A.; Handayani, D.; Altalhi, M.; Pillai, T.; Mantoro, T.; Kit, M.H.; Al-Shargie, F. Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm. Sensors 2021, 21, 8370. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Wang, J.; Zhang, W. Support Vector Machine Modeling and Intelligent Optimization; Tsinghua University Press: Beijing, China, 2015. [Google Scholar]
SVM Number | Time(s) | Correction Rate (%) | |
---|---|---|---|
0.1 | 16 | 0.2316 | 67.5 |
2 | 19 | 0.2056 | 75 |
10 | 21 | 0.1865 | 65 |
50 | 20 | 0.1762 | 65 |
100 | 21 | 0.1723 | 62.5 |
SVM Number | Time(s) | Correction Rate (%) | |
---|---|---|---|
0.01 | 17 | 0.2033 | 67.5 |
0.1 | 18 | 0.1801 | 70 |
1 | 20 | 0.1766 | 80 |
10 | 20 | 0.1923 | 70.5 |
20 | 20 | 0.2205 | 62.5 |
Training Time(s) | Training Data (%) | Testing Data (%) | ||
---|---|---|---|---|
2 | 1 | 1.8975 | 75 | 79.2 |
10 | 1.557 | 71.67 | 74.2 | |
10 | 1 | 1.857 | 70.8 | 69.2 |
10 | 1.7895 | 69.2 | 73.3 |
Training Time(s) | Training Data (%) | Testing Data (%) | ||
---|---|---|---|---|
2 | 1 | 1.3875 | 83 | 85 |
10 | 1.3695 | 81.67 | 82.5 | |
10 | 1 | 1.5675 | 80 | 80 |
10 | 1.5315 | 78.3 | 77.5 |
Classifier | Training Data (%) | Testing Data (%) | Time(s) |
---|---|---|---|
WPT-PSO-SVM | 90 | 89.2 | 4.783 |
WPT-IPSO-SVM | 92.5 | 93.3 | 5.729 |
CWT-PARAFAC-PSO-SVM | 94.2 | 92.5 | 13.167 |
CWT-PARAFAC-IPSO-SVM | 95.8 | 96.7 | 8.931 |
Classifier | Training Data (%) | Testing Data (%) | Time(s) |
---|---|---|---|
CWT-PARAFAC-PSO-SVM | 96.7 | 95.8 | 12.853 |
CWT-PARAFAC-IPSO-SVM | 100 | 99.2 | 9.462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, S. Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors 2022, 22, 3647. https://doi.org/10.3390/s22103647
Chen H, Li S. Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors. 2022; 22(10):3647. https://doi.org/10.3390/s22103647
Chicago/Turabian StyleChen, Hanxin, and Shaoyi Li. 2022. "Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis" Sensors 22, no. 10: 3647. https://doi.org/10.3390/s22103647
APA StyleChen, H., & Li, S. (2022). Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors, 22(10), 3647. https://doi.org/10.3390/s22103647