Rainfall Prediction System Using Machine Learning Fusion for Smart Cities
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- IF (DT is yes and NB is yes and KNN is yes and SVM is yes) THEN (Rainfall is yes)
- IF (DT is yes and NB is yes and KNN is yes and SVM is no) THEN (Rainfall is yes)
- IF (DT is yes and NB is yes and KNN is no and SVM is yes) THEN (Rainfall is yes)
- IF (DT is yes and NB is yes and KNN is no and SVM is no) THEN (Rainfall is yes)
- IF (DT is yes and NB is no and KNN is yes and SVM is yes) THEN (Rainfall is yes)
- IF (DT is yes and NB is no and KNN is yes and SVM is no) THEN (Rainfall is yes)
- IF (DT is yes and NB is no and KNN is no and SVM is yes) THEN (Rainfall is yes)
- IF (DT is yes and NB is no and KNN is no and SVM is no) THEN (Rainfall is no)
- IF (DT is no and NB is yes and KNN is yes and SVM is yes) THEN (Rainfall is yes)
- IF (DT is no and NB is yes and KNN is yes and SVM is no) THEN (Rainfall is no)
- IF (DT is no and NB is yes and KNN is no and SVM is yes) THEN (Rainfall is no)
- IF (DT is no and NB is yes and KNN is no and SVM is no) THEN (Rainfall is no)
- IF (DT is no and NB is no and KNN is yes and SVM is yes) THEN (Rainfall is no)
- IF (DT is no and NB is no and KNN is yes and SVM is no) THEN (Rainfall is no)
- IF (DT is no and NB is no and KNN is no and SVM is yes) THEN (Rainfall is no)
- IF (DT is no and NB is no and KNN is no and SVM is no) THEN (Rainfall is no)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aftab, S.; Ahmad, M.; Hameed, N.; Salman, M.; Ali, I.; Nawaz, Z. Rainfall Prediction in Lahore City using Data Mining Techniques. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 254–260. [Google Scholar] [CrossRef]
- Aftab, S.; Ahmad, M.; Hameed, N.; Salman, M.; Ali, I.; Nawaz, Z. Rainfall Prediction using Data Mining Techniques: A Systematic Literature Review. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Nayak, M.A.; Ghosh, S. Prediction of extreme rainfall event using weather pattern recognition and support vector machine classifier. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2013, 114, 583–603. [Google Scholar] [CrossRef]
- Yue, T.; Zhang, S.; Zhang, J.; Zhang, B.; Li, R. Variation of representative rainfall time series length for rainwater harvesting modelling in different climatic zones. J. Environ. Manag. 2020, 269, 110731. [Google Scholar] [CrossRef]
- Mishra, N.; Soni, H.K.; Sharma, S.; Upadhyay, A. A Comprehensive Survey of Data Mining Techniques on Time Series Data for Rainfall Prediction. J. ICT Res. Appl. 2017, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Ghose, U. A comparative study of classification algorithms for forecasting rainfall. In Proceedings of the 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) Trends and Future Directions, Noida, India, 2–4 September 2015; pp. 1–6. [Google Scholar]
- Wu, C.L.; Chau, K.W. Prediction of Rainfall Time Series Using Modular Soft Computing Methods. Eng. Appl. Artif. Intell. 2013, 26, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinformatics 2010, 12, 458–473. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Long, J.; Liu, M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 2015, 148, 136–142. [Google Scholar] [CrossRef]
- Ahmad, M.; Aftab, S.; Salman, M.; Hameed, N.; Ali, I.; Nawaz, Z. SVM Optimization for Sentiment Analysis. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 393–398. [Google Scholar] [CrossRef]
- Ahmad, M.; Aftab, S.; Salman, M.; Hameed, N. Sentiment Analysis using SVM: A Systematic Literature Review. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Aftab, S.; Ali, I. Sentiment Analysis of Tweets using SVM. Int. J. Comput. Appl. 2017, 177, 25–29. [Google Scholar] [CrossRef]
- Ahmad, M.; Aftab, S. Analyzing the Performance of SVM for Polarity Detection with Different Datasets. Int. J. Mod. Educ. Comput. Sci. 2017, 9, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Aftab, S.; Muhammad, S.S. Machine Learning Techniques for Sentiment Analysis: A Review. Int. J. Multidiscip. Sci. Eng. 2017, 8, 27. [Google Scholar]
- Available online: http://ru8.rp5.ru/ (accessed on 30 January 2021).
- Sivapragasam, C.; Liong, S.-Y.; Pasha, M.F.K. Rainfall and runoff forecasting with SSA–SVM approach. J. Hydroinformatics 2001, 3, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Isa, D.; Hong, L.L.; Kallimani, V.P.; Rajkumar, R. Text Document Pre-Processing Using the Bayes Formula for Classification Based on the Vector Space Model. Comput. Inf. Sci. 2008, 20, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Sawale, G.J.; Gupta, S.R. Use of Artificial Neural Network in Data Mining For Weather Forecasting. Int. J. Comput. Sci. Appl. 2013, 6, 383–387. [Google Scholar]
- Abhishek, K.; Kumar, A.; Ranjan, R.; Kumar, S. A rainfall prediction model using artificial neural network. In Proceedings of the 2012 IEEE Control and System Graduate Research Colloquium, ICSGRC 2012, no. Icsgrc, Selangor, Malaysia, 16–17 July 2012; pp. 82–87. [Google Scholar]
- Liu, J.N.K.; Li, B.N.L.; Dillon, T.S. An improved Naïve Bayesian classifier technique coupled with a novel input solution method. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2001, 31, 249–256. [Google Scholar] [CrossRef]
- Liu, J.N.K.; Hu, Y.; You, J.J.; Chan, P.W. Deep neural network based feature representation for weather forecasting. In Proceedings of the International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, 21–24 July 2014; p. 1. [Google Scholar]
- Hand, D.J. Principles of data mining. Drug Saf. 2007, 30, 621–622. [Google Scholar] [CrossRef]
- Joseph, J. Rainfall Prediction using Data Mining Techniques. Int. J. Comput. Appl. 2013, 83, 11–15. [Google Scholar] [CrossRef]
- Nikam, V.B.; Meshram, B.B. Modeling rainfall prediction using data mining method: A bayesian approach. In Proceedings of the International Conference on Computational Intelligence, Modelling and Simulation, Bangkok, Thailand, 24–25 September 2013; pp. 132–136. [Google Scholar]
- Zainudin, S.; Jasim, D.S.; Abu Bakar, A. Comparative Analysis of Data Mining Techniques for Malaysian Rainfall Prediction. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 1148. [Google Scholar] [CrossRef]
- Bagirov, A.; Mahmood, A.; Barton, A. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach. Atmospheric Res. 2017, 188, 20–29. [Google Scholar] [CrossRef]
- Cramer, S.; Kampouridis, M.; Freitas, A.; Alexandridis, A.K. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst. Appl. 2017, 85, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Soni, H.K.; Sharma, S.; Upadhyay, A.K. Development and Analysis of Artificial Neural Network Models for Rainfall Prediction by Using Time-Series Data. Int. J. Intell. Syst. Appl. 2018, 10, 16–23. [Google Scholar] [CrossRef]
- Ramana, R.V.; Krishna, B.; Kumar, S.R.; Pandey, N.G. Monthly Rainfall Prediction Using Wavelet Neural Network Analysis. Water Resour. Manag. 2013, 27, 3697–3711. [Google Scholar] [CrossRef] [Green Version]
- Radhika, Y.; Shashi, M. Atmospheric Temperature Prediction using Support Vector Machines. Int. J. Comput. Theory Eng. 2009, 1, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Duan, S.; Cai, T.; Liu, B. Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol. Energy 2011, 85, 2856–2870. [Google Scholar] [CrossRef]
- Lu, K.; Wang, L. A Novel Nonlinear Combination Model Based on Support Vector Machine for Rainfall Prediction. In Proceedings of the 2011 Fourth International Joint Conference on Computational Sciences and Optimization, Kunming, China, 15–19 April 2011; pp. 1343–1346. [Google Scholar] [CrossRef]
- Prasad, N.; Kumar, P.; Naidu, M.M. An Approach to Prediction of Precipitation Using Gini Index in SLIQ Decision Tree. In Proceedings of the 4th International Conference on Intelligent Systems, Modeling and Simulation, Bangkok, Thailand, 29–31 January 2013; pp. 56–60. [Google Scholar]
- Ahmed, U.; Issa, G.F.; Aftab, S.; Khan, M.F.; Said, R.A.T.; Ghazal, T.M.; Ahmad, M. Prediction of Diabetes Empowered With Fused Machine Learning. IEEE Access 2022, 10, 8529–8538. [Google Scholar] [CrossRef]
Reference | Method | Dataset | Dataset Duration | Accuracy % |
---|---|---|---|---|
D. Gupta et al. [6] | ANN-based classification model, with 10 hidden layers | Public | 18 years | 82.1 |
D. Gupta et al. [6] | Classification and Regression Tree-based Prediction | Public | 18 years | 80.3 |
D. Gupta et al. [6] | K nearest neighbor-based prediction, with k = 22 | Public | 18 years | 80.7 |
J. Joseph et al. [23] | ANN-based hybrid technique, integrating classification and clustering techniques | Private | 4 months | 87 |
V.B. Nikam et al. [24] | Feature selection-based Bayesian classification model | Public | 6 months | 91 |
N. Prasad et al. [33] | Decision Tree-based supervised learning in quest (SLIQ) | Public | 14 years | 72.3 |
Input/Output | Membership Functions | Graphical Representation of MF |
---|---|---|
Attribute Name | Attribute Type | Measurement |
---|---|---|
Temperature | Continuous | Degrees Celsius |
Visibility | Continuous | Kilometers |
Dew Point Temperature | Continuous | Degrees Celsius |
Atmospheric Pressure (sea level) | Continuous | Millimeters of Mercury |
Atmospheric Pressure (weather station) | Continuous | Millimeters of Mercury |
Relative Humidity | Continuous | Percentage |
Pressure Tendency | Continuous | Millimeters of Mercury |
Maximum Temperature | Continuous | Degrees Celsius |
Minimum Temperature | Continuous | Degrees Celsius |
Mean Wind Speed | Continuous | Meters per Second |
N = 18,143 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 16,577 (Negative-0) | 16456 | 121 | |
ER1 = 1566 (Positive-1) | 1194 | 372 |
N = 7776 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 7105 (Negative-0) | 7036 | 69 | |
ER1 = 671 (Positive-1) | 516 | 155 |
N = 18,143 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 16,577 (Negative-0) | 16176 | 401 | |
ER1 = 1566 (Positive-1) | 1286 | 280 |
N = 7776 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 7105 (Negative-0) | 6937 | 168 | |
ER1 = 671 (Positive-1) | 555 | 116 |
N = 18,143 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 16,577 (Negative-0) | 16481 | 96 | |
ER1 = 1566 (Positive-1) | 1250 | 316 |
N = 7776 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 7105 (Negative-0) | 7050 | 55 | |
ER1 = 671 (Positive-1) | 528 | 143 |
N = 18,143 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 16577 (Negative-0) | 16544 | 33 | |
ER1 = 1566 (Positive-1) | 1384 | 182 |
N = 7776 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 7105 (Negative-0) | 7086 | 19 | |
ER1 = 671 (Positive-1) | 596 | 75 |
N = 7776 (No of Samples) | Output Result (OR0, OR1) | ||
---|---|---|---|
INPUT | Expected Result (ER0, ER1) | OR0 (Negative-0) | OR1 (Positive-1) |
ER0 = 7105 (Negative-0) | 7063 | 42 | |
ER1 = 671 (Positive-1) | 443 | 228 |
ML Algorithm | Task | Specificity | Sensitivity | False Positive Value | False Negative Value | Likelihood Ratio Positive | Likelihood Ratio Negative | Positive Prediction Value | Negative Prediction Value | Accuracy | Miss Rate |
---|---|---|---|---|---|---|---|---|---|---|---|
Decision Tree | Training | 0.99 | 0.24 | 0.00 | 0.76 | 32.54 | 0.77 | 0.75 | 0.93 | 0.91 | 0.07 |
Testing | 0.99 | 0.23 | 0.01 | 0.77 | 23.79 | 0.78 | 0.69 | 0.93 | 0.92 | 0.07 | |
Naïve Bayes | Training | 0.98 | 0.18 | 0.02 | 0.82 | 7.39 | 0.84 | 0.41 | 0.93 | 0.90 | 0.09 |
Testing | 0.98 | 0.17 | 0.02 | 0.83 | 7.31 | 0.85 | 0.41 | 0.93 | 0.90 | 0.09 | |
KNN | Training | 0.99 | 0.20 | 0.00 | 0.80 | 34.84 | 0.80 | 0.77 | 0.91 | 0.93 | 0.07 |
Testing | 0.99 | 0.21 | 0.00 | 0.79 | 27.53 | 0.79 | 0.72 | 0.93 | 0.93 | 0.07 | |
SVM | Training | 0.99 | 0.12 | 0.00 | 0.88 | 58.38 | 0.89 | 0.85 | 0.92 | 0.92 | 0.08 |
Testing | 0.99 | 0.11 | 0.00 | 0.89 | 41.80 | 0.89 | 0.80 | 0.92 | 0.92 | 0.08 | |
Proposed Fussed ML | Testing | 0.99 | 0.34 | 0.01 | 0.66 | 57.48 | 0.66 | 0.84 | 0.94 | 0.94 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.-u.; Abbas, S.; Gollapalli, M.; Ahmed, R.; Aftab, S.; Ahmad, M.; Khan, M.A.; Mosavi, A. Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors 2022, 22, 3504. https://doi.org/10.3390/s22093504
Rahman A-u, Abbas S, Gollapalli M, Ahmed R, Aftab S, Ahmad M, Khan MA, Mosavi A. Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors. 2022; 22(9):3504. https://doi.org/10.3390/s22093504
Chicago/Turabian StyleRahman, Atta-ur, Sagheer Abbas, Mohammed Gollapalli, Rashad Ahmed, Shabib Aftab, Munir Ahmad, Muhammad Adnan Khan, and Amir Mosavi. 2022. "Rainfall Prediction System Using Machine Learning Fusion for Smart Cities" Sensors 22, no. 9: 3504. https://doi.org/10.3390/s22093504
APA StyleRahman, A. -u., Abbas, S., Gollapalli, M., Ahmed, R., Aftab, S., Ahmad, M., Khan, M. A., & Mosavi, A. (2022). Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors, 22(9), 3504. https://doi.org/10.3390/s22093504