Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm
Abstract
:1. Introduction
Concept | Sources |
---|---|
Agriculture-farm management | [40] |
Smart farming—Hydroponics | [41] |
Food processing | [42] |
Food losses—supply chain of fresh products | [43] |
Agri-food—societal and ethical aspects | [44] |
Food processing—fresh horticulture supply chain | [45] |
Agri-food supply chain | [46] |
Smart farming—definition and concept | [22] |
Agriculture—general application and adoption | [47] |
2. Digital Twin in Soil and Irrigation
3. Digital Twin in Crop Production
4. Digital Twin in Post-Harvest Process
5. Challenges and Future Needs
Concept | Key Components and Benefits | Source |
---|---|---|
Soil–water | Supporting precision irrigation in agriculture, better irrigation planning and water distribution, reduce crop yield losses | [54] |
Soil–water | IoT-based water management platform, monitoring water pattern in soil | [37] |
Water | Analyze and optimization of aquaponic systems, minimize water waste | [85] |
Irrigation | Urban-integrated hydroponic system, integration of forecasting models for better decision-making assistance | [73] |
Irrigation | System management and irrigation decision-making integration, water use, global energy and pumping facilities efficiency evaluation, understanding of irrigation system process | [57] |
Water | Development of decision support system, enhancement of cyber-physical implementation in aquaponics | [86] |
Concept | Key Components and Benefits | Source |
---|---|---|
Vertical farming | Environmental conditions assessment, identification of forecasting and decision support models, monitoring and optimization of agri-food lifecycle | [36] |
Plant/tree | Plant condition monitoring including structure, health, stress, and quality of fruit | [31] |
Robot | Analysis and performance evaluation, robot selection, and navigation | [35] |
Robot | Simulation of field environment, autonomous robot navigation | [68] |
Agricultural machinery | Development and advantages of business models for potato harvesting | [59] |
Agricultural landscape | Resource distribution management over different stakeholders in agriculture | [72] |
Crop | Forecasting yield and duration of plant development | [33] |
Agricultural machinery | Development of three-dimensional geometric models, drawings of devices, mechanisms, and the attributive data | [87] |
Plant | Detection of plant diseases and nutrient efficiency | [32] |
Crop/hydroponic farm | Identification of crop growth parameters such as lighting, external temperature, and ventilation systems | [73] |
Crop | Optimize productivity, climate control strategies, and crop treatment management in controlled environment agriculture | [74] |
Robot | Co-simulation of robot environment, prediction of robot movement, and safety monitoring | [67] |
Concept | Key Components and Benefits | Source |
---|---|---|
Food supply chain | Thermophysical behavior of fruit during supply chain, storage at different airflow rate, understanding, recording, and predicting losses of temperature-based fruit quality | [82] |
Beverage | Predicting possible anomalies and preventing safety issues for employees | [88] |
Food | Machine learning-based models for real-time response and quality predictions, maintenance, and data collection | [80] |
Food supply chain | Development of practical implementation strategies, enhancing resilience food retail, and capacity management | [83] |
Food | Challenges, methodologies, and opportunities for implementation of digital twin in food processing, importance of realistic and accurate models in food processing | [81] |
Food | Modeling of equipment, humans, and space for fast-food producing, management of production chain, and performance evaluation | [89] |
Post-harvest | Monitoring of retail stores and detection of fruit quality lost | [84] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Transforming Food and Agriculture to Achieve the SDGs; FAO: Rome, Italy, 2018. [Google Scholar]
- Prause, L. Digital Agriculture and Labor: A Few Challenges for Social Sustainability. Sustainability 2021, 13, 5980. [Google Scholar] [CrossRef]
- de Gennaro, B.C.; Forleo, M.B. Sustainability perspectives in agricultural economics research and policy agenda. Agric. Food Econ. 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. If they don’t tell us what they do with it, why would we trust them? Trust, transparency and benefit-sharing in Smart Farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 100285. [Google Scholar] [CrossRef]
- Basso, B.; Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Goel, R.K.; Yadav, C.S.; Vishnoi, S.; Rastogi, R. Smart agriculture–Urgent need of the day in developing countries. Sustain. Comput. Inform. Syst. 2021, 30, 100512. [Google Scholar] [CrossRef]
- Mehrabi, Z.; McDowell, M.J.; Ricciardi, V.; Levers, C.; Martinez, J.D.; Mehrabi, N.; Wittman, H.; Ramankutty, N.; Jarvis, A. The global divide in data-driven farming. Nat. Sustain. 2021, 4, 154–160. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D. What are the implications of digitalisation for agricultural knowledge? Front. Sustain. Food Syst. 2020, 4, 66. [Google Scholar] [CrossRef]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Thorburn, P. Big Data, Trust and Collaboration: Exploring the Socio-Technical Enabling Conditions for Big Data in the Grains Industry; CSIRO: Brisbane, Australia, 2016; p. 34.
- Smith, M.J. Getting value from artificial intelligence in agriculture. Anim. Prod. Sci. 2018, 60, 46–54. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Wilczek, U.; Hensel, O. Sugar Beet Damage Detection during Harvesting Using Different Convolutional Neural Network Models. Agriculture 2021, 11, 1111. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Griepentrog, H.W. Digital Farming and Field Robotics: Internet of Things, Cloud Computing, and Big Data. In Fundamentals of Agricultural and Field Robotics. Agriculture Automation and Control; Karkee, M., Zhang, Q., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Zhang, X.; Cao, Z.; Dong, W. Overview of Edge Computing in the Agricultural Internet of Things: Key Technologies, Applications, Challenges. IEEE Access 2020, 8, 141748–141761. [Google Scholar] [CrossRef]
- Sarker, V.K.; Queralta, J.P.; Gia, T.N.; Tenhunen, H.; Westerlund, T. A Survey on LoRa for IoT: Integrating Edge Computing. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 295–300. [Google Scholar]
- Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for internet of things. Future Gener. Comput. Syst. 2020, 106, 67–76. [Google Scholar] [CrossRef]
- An, W.; Wu, D.; Ci, S.; Luo, H.; Adamchuk, V.; Xu, Z. Agriculture Cyber-Physical Systems. In Cyber-Physical Systems; Academic Press: Cambridge, MA, USA, 2017; pp. 399–417. [Google Scholar]
- Chergui, N.; Kechadi, M.T.; McDonnell, M. The Impact of Data Analytics in Digital Agriculture: A Review. In Proceedings of the 2020 International Multi-Conference on: Organization of Knowledge and Advanced Technologies (OCTA), Tunis, Tunisia, 6–8 February 2020; pp. 1–13. [Google Scholar]
- Walters, J.P.; Archer, D.W.; Sassenrath, G.F.; Hendrickson, J.R.; Hanson, J.D.; Halloran, J.M.; Vadas, P.; Alarcon, V.J. Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol. Model. 2016, 333, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Grieves, M.; Vickers, J. Digital twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021, 145, 113524. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Juarez, M.G.; Botti, V.J.; Giret, A.S. Digital Twins: Review and Challenges. J. Comput. Inf. Sci. Eng. 2021, 21, 030802. [Google Scholar] [CrossRef]
- Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Modeling Simul. Eng. Sci. 2020, 7, 13. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, X.; Schweiger, L.; Kiritsis, D. A Cognitive Approach to Manage the Complexity of Digital Twin Systems. In Smart Services Summit; West, S., Meierhofer, J., Ganz, C., Eds.; Progress in IS; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Neethirajan, S.; Kemp, B. Digital Twins in Livestock Farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef]
- Moghadam, P.; Lowe, T.; Edwards, E.J. Digital Twin for the Future of Orchard Production Systems. Multidiscip. Digit. Publ. Inst. Proc. 2020, 36, 92. [Google Scholar] [CrossRef] [Green Version]
- Angin, P.; Anisi, M.H.; Göksel, F.; Gürsoy, C.; Büyükgülcü, A. AgriLoRa: A Digital Twin Framework for Smart Agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2020, 11, 77–96. [Google Scholar]
- Skobelev, P.O.; Mayorov, I.V.; Simonova, E.V.; Goryanin, O.I.; Zhilyaev, A.A.; Tabachinskiy, A.S.; Yalovenko, V.V. Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management. J. Phys. Conf. Ser. 2020, 1703, 012022. [Google Scholar] [CrossRef]
- Jo, S.K.; Park, D.H.; Park, H.; Kim, S.H. Smart livestock farms using digital twin: Feasibility study. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 17–19 October 2018; pp. 1461–1463. [Google Scholar]
- Tsolakis, N.; Bechtsis, D.; Bochtis, D. AgROSos: A Robot Operating System Based Emulation Tool for Agricultural Robotics. Agronomy 2019, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.; Barata, J.; Veloso, M.; Veloso, L.; Nunes, J. Towards sustainable digital twins for vertical farming. In Proceedings of the 2018 Thirteenth International Conference on Digital Information Management (ICDIM), Berlin, Germany, 24–26 September 2018; pp. 234–239. [Google Scholar]
- Alves, R.G.; Souza, G.; Maia, R.F.; Tran, A.L.H.; Kamienski, C.; Soininen, J.P.; Aquino, P.T.; Lima, F. A digital twin for smart farming. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Santa Clara, CA, USA, 8–11 September 2022; pp. 1–4. [Google Scholar]
- Laamarti, F.; Badawi, H.F.; Ding, Y.; Arafsha, F.; Hafidh, B.; El Saddik, A. An ISO/IEEE 11073 Standardized Digital Twin Framework for Health and Well-Being in Smart Cities. IEEE Access 2020, 8, 105950–105961. [Google Scholar] [CrossRef]
- Gámez Díaz, R.; Yu, Q.; Ding, Y.; Laamarti, F.; El Saddik, A. Digital Twin Coaching for Physical Activities: A Survey. Sensors 2020, 20, 5936. [Google Scholar] [CrossRef]
- Verdouw, C.N.; Kruize, J.W. Digital twins in farm management: Illustrations from the FIWARE accelerators SmartAgriFood and Fractals. In Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture, Hamilton, New Zealand, 16–18 October 2017; pp. 16–18. [Google Scholar]
- Sreedevi, T.R.; Kumar, M.S. Digital Twin in Smart Farming: A Categorical Literature Review and Exploring Possibilities in Hydroponics. In Proceedings of the 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Cochin, India, 2–4 July 2020; pp. 120–124. [Google Scholar]
- Verboven, P.; Defraeye, T.; Datta, A.K.; Nicolai, B. Digital twins of food process operations: The next step for food process models? Curr. Opin. Food Sci. 2020, 35, 79–87. [Google Scholar] [CrossRef]
- Onwude, D.I.; Chen, G.; Eke-Emezie, N.; Kabutey, A.; Khaled, A.Y.; Sturm, B. Recent Advances in Reducing Food Losses in the Supply Chain of Fresh Agricultural Produce. Processes 2020, 8, 1431. [Google Scholar] [CrossRef]
- van der Burg, S.; Kloppenburg, S.; Kok, E.J.; van der Voort, M. Digital twins in agri-food: Societal and ethical themes and questions for further research. NJAS Impact Agric. Life Sci. 2021, 93, 98–125. [Google Scholar] [CrossRef]
- Defraeye, T.; Shrivastava, C.; Berry, T.; Verboven, P.; Onwude, D.; Schudel, S.; Bühlmann, A.; Cronje, P.; Rossi, R.M. Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends Food Sci. Technol. 2021, 109, 245–258. [Google Scholar] [CrossRef]
- Tebaldi, L.; Vignali, G.; Bottani, E. Digital Twin in the Agri-Food Supply Chain: A Literature Review. In APMS 2021: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production System; Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D., Eds.; IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2021; Volume 633. [Google Scholar]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Vilček, J.; Štefan, K. Integrated index of agricultural soil quality in Slovakia. J. Maps 2018, 14, 68–76. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Basterrechea, D.A.; Rocher, J.; Parra, M.; Parra, L.; Marin, J.F.; Mauri, P.V.; Lloret, J. Design and Calibration of Moisture Sensor Based on Electromagnetic Field Measurement for Irrigation Monitoring. Chemosensors 2021, 9, 251. [Google Scholar] [CrossRef]
- Söderström, M.; Sohlenius, G.; Rodhe, L.; Piikki, K. Adaptation of regional digital soil mapping for precision agriculture. Precis. Agric. 2016, 17, 588–607. [Google Scholar] [CrossRef] [Green Version]
- Searle, R.; McBratney, A.; Grundy, M.; Kidd, D.; Malone, B.; Arrouays, D.; Stockman, U.; Zund, P.; Wilson, P.; Wilford, J.; et al. Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Reg. 2021, 24, e00359. [Google Scholar] [CrossRef]
- Wadoux, A.M.C.; McBratney, A.B. Digital soil science and beyond. Soil Sci. Soc. Am. J. 2021, 85, 1313–1331. [Google Scholar] [CrossRef]
- Villani, G.; Castaldi, P.; Toscano, A.; Stanghellini, C.; Cinotti, T.S.; Maia, R.F.; Tomei, F.; Taumberger, M.; Zanetti, P.; Panizzi, S. Soil Water Balance Model CRITERIA-ID in SWAMP Project: Proof of Concept. In Proceedings of the 2018 23rd Conference of Open Innovations Association (FRUCT), Bologna, Italy, 13–16 November 2018; pp. 398–404. [Google Scholar]
- Cunha, H.; Loureiro, D.; Sousa, G.; Covas, D.; Alegre, H. A comprehensive water balance methodology for collective irrigation systems. Agric. Water Manag. 2019, 223, 105660. [Google Scholar] [CrossRef]
- Pesantez, J.E.; Alghamdi, F.; Sabu, S.; Mahinthakumar, G.; Berglund, E.Z. Using a Digital Twin to Explore Water Infrastructure Impacts During the COVID-19 Pandemic. Sustain. Cities Soc. 2021, 103520. [Google Scholar] [CrossRef]
- Moreira, M.; Mourato, S.; Rodrigues, C.; Silva, S.; Guimarães, R.; Chibeles, C. Building a Digital Twin for the Management of Pressurised Collective Irrigation Systems. In ICoWEFS 2021: Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021), Proceedings of the International Conference on Water Energy Food and Sustainability, Leiria, Portugal, 10–12 May 2021; da Costa Sanches Galvão, J.R., de Brito, P.S.D., dos Santos Neves, F., da Silva Craveiro, F.G., de Amorim Almeida, H., Vasco, J.O.C., Neves, L.M.P., de Jesus Gomes, R., de Jesus Martins Mourato, S., Ribeiro, V.S.S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Reis, Â.V.D.; Medeiros, F.A.; Ferreira, M.F.; Machado, R.L.T.; Romano, L.N.; Marini, V.K.; Francetto, T.R.; Machado, A.L.T. Technological trends in digital agriculture and their impact on agricultural machinery development practices. Revi. Ciência Agronômica 2021, 51, e20207740. [Google Scholar] [CrossRef]
- CEMA. Digital Farming: What Does It Really Mean? 2017. Available online: https://www.cema-agri.org/images/publications/position-papers/CEMA_Digital_Farming_-_Agriculture_4.0__13_02_2017_0.pdf (accessed on 4 January 2022).
- Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; LeBlanc, J.; Martin, R.; Neufeld, H.T.; Nixon, A.; et al. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. J. Rural Stud. 2019, 68, 112–122. [Google Scholar] [CrossRef]
- Liu, Q.; Leng, J.; Yan, D.; Zhang, D.; Wei, L.; Yu, A.; Zhao, R.; Zhang, H.; Chen, X. Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system. J. Manuf. Syst. 2021, 58, 52–64. [Google Scholar] [CrossRef]
- Alamin, K.; Vinco, S.; Poncino, M.; Dall’Ora, N.; Fraccaroli, E.; Quaglia, D. February. Digital Twin Extension with Extra-Functional Properties. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Virtual, 1–5 February 2021; pp. 434–439. [Google Scholar]
- Kampker, A.; Stich, V.; Jussen, P.; Moser, B.; Kuntz, J. Business Models for Industrial Smart Services–The Example of a Digital Twin for a Product-Service-System for Potato Harvesting. Procedia CIRP 2019, 83, 534–540. [Google Scholar] [CrossRef]
- Vlădăreanu, L.; Gal, A.I.; Melinte, O.D.; Vlădăreanu, V.; Iliescu, M.; Bruja, A.; Feng, Y.; Ciocîrlan, A. Robot Digital Twin towards Industry 4.0. IFAC-PapersOnLine 2020, 53, 10867–10872. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, W.; Wang, P.; Zhang, Y. Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis. IEEE/CAA J. Autom. Sin. 2020, 8, 334–343. [Google Scholar] [CrossRef]
- Garg, G.; Kuts, V.; Anbarjafari, G. Digital Twin for FANUC Robots: Industrial Robot Programming and Simulation Using Virtual Reality. Sustainability 2021, 13, 10336. [Google Scholar] [CrossRef]
- Lumer-Klabbers, G.; Hausted, J.O.; Kvistgaard, J.L.; Macedo, H.D.; Frasheri, M.; Larsen, P.G. Towards a Digital Twin Framework for Autonomous Robots. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 1254–1259. [Google Scholar]
- Linz, A.; Hertzberg, J.; Roters, J.; Ruckelshausen, A. “Digitale Zwillinge” als Werkzeug für die Entwicklung von Feldrobotern in landwirtschaftlichen Prozessen. In 39. GIL-Jahrestagung, Digitalisierung für landwirtschaftliche Betriebe in kleinstrukturierten Regionen-ein Widerspruch in sich? Gesellschaft für Informatik: Bonn, Germany, 2019; pp. 125–130. Available online: https://dl.gi.de/handle/20.500.12116/23075 (accessed on 4 January 2022). (In German)
- Ford, D.N.; Wolf, C.M. Smart Cities with Digital Twin Systems for Disaster Management. J. Manag. Eng. 2020, 36, 04020027. [Google Scholar] [CrossRef] [Green Version]
- Tsay, J.R.; Lu, C.T.; Tu, T.C. Application of Common Information Platform to Foster Data-Driven Agriculture in Taiwan. Food Agricultural Policy Platform Article. 2019. Available online: https://ap.fftc.org.tw/article/1632 (accessed on 4 January 2022).
- Villalonga, A.; Negri, E.; Fumagalli, L.; Macchi, M.; Castaño, F.; Haber, R. Local Decision Making based on Distributed Digital Twin Framework. IFAC-PapersOnLine 2020, 53, 10568–10573. [Google Scholar] [CrossRef]
- Moshrefzadeh, M.; Machl, T.; Gackstetter, D.; Donaubauer, A.; Kolbe, T.H. Towards a Distributed Digital Twin of the Agricultural Landscape. J. Digit. Landsc. Archit. 2020, 5, 173–186. [Google Scholar]
- Jans-Singh, M.; Leeming, K.; Choudhary, R.; Girolami, M. Digital twin of an urban-integrated hydroponic farm. Data-Cent. Eng. 2020, 1, e20. [Google Scholar] [CrossRef]
- Chaux, J.D.; Sanchez-Londono, D.; Barbieri, G. A Digital Twin Architecture to Optimize Productivity within Controlled Environment Agriculture. Appl. Sci. 2021, 11, 8875. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Del Mar Alemany Díaz, M.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Purandare, H.; Ketkar, N.; Pansare, S.; Padhye, P.; Ghotkar, A. Analysis of post-harvest losses: An Internet of Things and machine learning approach. In Proceedings of the 2016 International conference on automatic control and dynamic optimization techniques (ICACDOT), Pune, India, 9–10 September 2016; pp. 222–226. [Google Scholar]
- Mishra, C.K.; Chakshu. Post-harvest crop management system using IoT and AI. Int. J. Adv. Res. Dev. 2019, 4, 42–44. [Google Scholar]
- Mor, S.; Madan, S.; Prasad, K.D. Artificial intelligence and carbon footprints: Roadmap for Indian agriculture. Strateg. Chang. 2021, 30, 269–280. [Google Scholar] [CrossRef]
- Bekele, B. Review on Factors Affecting Postharvest Quality of Fruits. J. Plant Sci. Res. 2018, 5, 180. [Google Scholar]
- Eppinger, T.; Longwell, G.; Mas, P.; Goodheart, K.; Badiali, U.; Aglave, R. Increase Food Production Efficiency Using the Executable Digital Twin (xDT). Chem. Eng. Trans. 2021, 87, 37–42. [Google Scholar]
- Koulouris, A.; Misailidis, N.; Petrides, D. Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. Food Bioprod. Process. 2021, 126, 317–333. [Google Scholar] [CrossRef]
- Defraeye, T.; Tagliavini, G.; Wu, W.; Prawiranto, K.; Schudel, S.; Kerisima, M.A.; Verboven, P.; Bühlmann, A. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resour. Conserv. Recycl. 2019, 149, 778–794. [Google Scholar] [CrossRef]
- Burgos, D.; Ivanov, D. Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions. Transp. Res. E Logist. Transp. Rev. 2021, 152, 102412. [Google Scholar] [CrossRef] [PubMed]
- Shoji, K.; Schudel, S.; Onwude, D.; Shrivastava, C.; Defraeye, T. Mapping the postharvest life of imported fruits from packhouse to retail stores using physics-based digital twins. Resour. Conserv. Recycl. 2022, 176, 105914. [Google Scholar] [CrossRef]
- Ahmed, A.; Zulfiqar, S.; Ghandar, A.; Chen, Y.; Hanai, M.; Theodoropoulos, G. Digital twin technology for aquaponics: Towards optimizing food production with dynamic data driven application systems. In AsiaSim 2019: Methods and Applications for Modeling and Simulation of Complex Systems, Proceedings of the Asian Simulation Conference, Singapore, 30 October–1 November 2019; Springer: Singapore; pp. 3–14.
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study With Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Nemtinov, K.; Eruslanova, M.; Zazulya, A.; Nemtinova, Y.; Haider, S.S. Creating a digital twin of an agricultural machine. In Proceedings of the MATEC Web of Conferences, EDP Sciences, Sevastopol, Russia, 7–11 September 2020; Volume 329, p. 05002. [Google Scholar]
- Bottani, E.; Vignali, G.; Tancredi, G.P.C. A digital twin model of a pasteurization system for food beverages: Tools and architecture. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 15–17 June 2020; pp. 1–8. [Google Scholar]
- Chiscop, F.; Necula, B.; Cazacu, C.C.; Stoica, C.E. Using Digital Twining in Fast-food Production Chain Simulation. In Proceedings of the MATEC Web of Conferences, EDP Sciences, Sibiu, Romania, 2–4 June 2021; Volume 343, p. 03005. [Google Scholar]
- Tekinerdogan, B.; Verdouw, C. Systems architecture design pattern catalog for developing digital twins. Sensors 2020, 20, 5103. [Google Scholar] [CrossRef] [PubMed]
- Ciruela-Lorenzo, A.M.; Del-Aguila-Obra, A.R.; Padilla-Meléndez, A.; Plaza-Angulo, J.J. Digitalization of Agri-Cooperatives in the Smart Agriculture Context. Proposal of a Digital Diagnosis Tool. Sustainability 2020, 12, 1325. [Google Scholar] [CrossRef] [Green Version]
- O’Grady, M.J.; Langton, D.; O’Hare, G.M.P. Edge computing: A tractable model for smart agriculture? Artif. Intell. Agric. 2019, 3, 42–51. [Google Scholar] [CrossRef]
- Komasilovs, V.; Zacepins, A.; Kviesis, A.; Nasirahmadi, A.; Sturm, B. Solution for remote real-time visual expertise of agricultural objects. Agron. Res. 2018, 16, 464–473. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. https://doi.org/10.3390/s22020498
Nasirahmadi A, Hensel O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors. 2022; 22(2):498. https://doi.org/10.3390/s22020498
Chicago/Turabian StyleNasirahmadi, Abozar, and Oliver Hensel. 2022. "Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm" Sensors 22, no. 2: 498. https://doi.org/10.3390/s22020498
APA StyleNasirahmadi, A., & Hensel, O. (2022). Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors, 22(2), 498. https://doi.org/10.3390/s22020498