Acceptance and Preferences of Using Ambient Sensor-Based Lifelogging Technologies in Home Environments
Abstract
:1. Introduction
2. Sensor-Based Lifelogging Technologies
2.1. PIR
2.2. H&T
2.3. MAG
3. Technology Acceptance of Sensor-Based Lifelogging Technologies
3.1. Technology Acceptance: Concepts & Approaches
3.2. Acceptance of Lifelogging Technologies
3.3. Research Aim and Questions
- RQ1: Does the perception of benefits depend on the specific sensor type?
- RQ2: Does the perception of barriers depend on the specific sensor type?
- RQ3: Does the acceptance differ for the specific sensor types?
- RQ4: How (high) are the costs for the acquisition of sensor-based technologies estimated to be?
- RQ5: Does the willingness to pay for the acquisition of sensor-based technologies differ from the assumed costs?
4. Methodological Approach
4.1. Design of Online Survey
4.2. Data Analysis
4.3. Participants
5. Results
5.1. User Evaluation of Different Sensor-Based Technologies
5.2. Assumed Costs and Willingness to Pay
6. Discussion
6.1. Comparing User-Relevant and Technical Perspectives
6.2. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climent-Perez, P.; Spinsante, S.; Mihailidis, A.; Florez-Revuelta, F. A review on video-based active and assisted living technologies for automated lifelogging. Exp. Sys. Appl. 2020, 139, 112847. [Google Scholar] [CrossRef]
- Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 2012, 17, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Ksibi, A.; Alluhaidan, A.S.D.; Salhi, A.; El-Rahman, S.A. Overview of Lifelogging: Current Challenges and Advances. IEEE Access 2021, 9, 62630–62641. [Google Scholar] [CrossRef]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Satzoda, R.K.; Sathyanarayana, S.; Thambipillai, S. Vision-based patient monitoring: A comprehensive review of algorithms and technologies. J. Ambient Intell. Humaniz. Comput. 2018, 9, 225–251. [Google Scholar] [CrossRef]
- Espinosa, R.; Ponce, H.; Gutiérrez, S.; Martínez-Villaseñor, L.; Brieva, J.; Moya-Albor, E. A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset. Comput. Biol. Med. 2019, 115, 103520. [Google Scholar] [CrossRef]
- Taufeeque, M.; Koita, S.; Spicher, N.; Deserno, T.N. Multi-camera, multi-person, and real-time fall detection using long short term memory. In Proceedings of the SPIE, Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications, Houston, TX, USA, 15–20 February 2021; Volume 1160109. [Google Scholar]
- Shu, F.; Shu, J. An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box. Sci. Rep. 2021, 11, 2471. [Google Scholar] [CrossRef]
- Toreyin, B.U.; Soyer, A.B.; Onaran, I.; Cetin, E.E. Falling person detection using multi-sensor signal processing. EURASIP J. Adv. Signal. Process. 2007, 2008, 149304. [Google Scholar] [CrossRef] [Green Version]
- Zigel, Y.; Litvak, D.; Gannot, I. A method for automatic fall detection of elderly people using floor vibrations and sound—Proof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 2009, 56, 2858–2867. [Google Scholar] [CrossRef]
- Poli, A.; Cosoli, G.; Scalise, L.; Spinsante, S. Impact of wearable measurement properties and data quality on ADLs classification accuracy. IEEE Sens. J. 2020, 21, 14221–14231. [Google Scholar] [CrossRef]
- Lai, C.F.; Chang, S.Y.; Chao, H.C.; Huang, Y.M. Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling. IEEE Sens. J. 2010, 11, 763–770. [Google Scholar] [CrossRef]
- Wu, G.E.; Xue, S. Portable preimpact fall detector with inertial sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 16, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, P.; Cook, D.J. Keeping the resident in the loop: Adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. Syst. Hum. 2009, 39, 949–959. [Google Scholar] [CrossRef]
- Zia, U.; Khaksar, W.; Torresen, J. Ambient Sensors for Elderly Care and Independent Living: A Survey. Sensors 2018, 18, 2027. [Google Scholar]
- VandeWeerd, C.; Yalcin, A.; Aden-Buie, G.; Wang, Y.; Roberts, M.; Mahser, N.; Fnu, C.; Fabiano, D. HomeSense: Design of an ambient home health and wellness monitoring platform for older adults. Health Technol. 2020, 10, 1291–1309. [Google Scholar] [CrossRef]
- Zhong, C.-L.; Li, Y.-L. Internet of things sensors assisted physical activity recognition and health monitoring of college students. Measurement 2020, 159, 107774. [Google Scholar] [CrossRef]
- Qi, J.; Yang, P.; Waraich, A.; Deng, Z.; Zhao, Y.; Yang, Y. Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review. J. Biomed. Inform. 2018, 87, 138–153. [Google Scholar] [CrossRef]
- Cetin, A.E.; Ozturk, Y.; Hanosh, O.; Ansari, R. Review of signal processing applications of Pyroelectric Infrared (PIR) sensors with a focus on respiration rate and heart rate detection. Digit. Signal Process. 2021, 119, 103247. [Google Scholar] [CrossRef]
- Gambi, E.; Montanini, L.; Pigini, D.; Ciattaglia, G.; Spinsante, S. A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol. Int. J. Distrib. Sens. Networks. 2018, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.; Acero, A.; Gutierrez, S.; Rodrigo, P.M.; Lay-Ekuakille, A. A low cost presence detection system for smart homes. In Proceedings of the International Conference on Research in Intelligent and Computing in Engineering (RICE), Hanoi, Vietnam, 8–9 August 2018; pp. 1–6. [Google Scholar]
- Aldeer, M.; Javanmard, M.; Martin, R.P. A Review of Medication Adherence Monitoring Technologies. Appl. Syst. Innov. 2018, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, M.; Keppler, D. Modelle der technikorientierten Akzeptanzforschung: Überblick und Reflexion am Beispiel eines Forschungsprojekts zur Implementierung innovativer technischer Energieeffizienz-Maßnahmen [Models of technology-oriented acceptance research: Overview and reflection using the example of a research project on the implementation of innovative technical energy efficiency measures]. Tech. Rep. Tech. Univ. Berl. 2013. [Google Scholar] [CrossRef]
- Dethloff, C. Akzeptanz und Nicht-Akzeptanz von Technischen Produktinnovationen. [Acceptance and Non-Acceptance of Technical Product Innovations]; Pabst Science Publisher: Berlin, Germany, 2004. [Google Scholar]
- Cimperman, M.; Brenčič, M.M.; Trkman, P. Analyzing older users’ home telehealth services acceptance behavior—Applying an Extended UTAUT model. Int. J. Med. Inform. 2016, 90, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offermann-van Heek, J.; Schaar, A.K.; Brokmann, J.C.; Ziefle, M. User Acceptance of Telemedical Consultations in Nursing Homes: First Insights & Outlook. In Proceedings of the 7th International Conference on Information and Communication Technologies for Ageing Well and e-Health, Prague, Czech Republic, 24–26 April 2021; pp. 36–45. [Google Scholar]
- Wilkowska, W.; Offermann-van Heek, J.; Ziefle, M. User Acceptance of Lifelogging Technologies: The Power of Experience and Technological Self-Efficacy. In Proceedings of the 7th International Conference on Information and Communication Technologies for Ageing Well and e-Health, Prague, Czech Republic, 24–26 April 2021; pp. 26–35. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: A unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Peek, S.T.; Wouters, E.J.; Van Hoof, J.; Luijkx, K.G.; Boeije, H.R.; Vrijhoef, H.J. Factors influencing acceptance of technology for aging in place: A systematic review. Int. J. Med. Inform. 2014, 83, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Beringer, R.; Sixsmith, A.; Campo, M.; Brown, J.; McCloskey, R. The “acceptance” of ambient assisted living: Developing an alternate methodology to this limited research lens. In International Conference on Smart Homes and Health Telematics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 161–167. [Google Scholar]
- Gövercin, M.; Meyer, S.; Schellenbach, M.; Steinhagen-Thiessen, E.; Weiss, B.; Haesner, M. SmartSenior@ home: Acceptance of an integrated ambient assisted living system. Results of a clinical field trial in 35 households. Inform. Health Soc. Care 2016, 41, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Jaschinski, C.; Allouch, S.B. Listening to the ones who care: Exploring the perceptions of informal caregivers towards ambient assisted living applications. J. Ambient Intell. Humaniz. Comput. 2019, 10, 761–778. [Google Scholar] [CrossRef]
- Wichert, R.; Furfari, F.; Kung, A.; Tazari, M.R. How to overcome the market entrance barrier and achieve the market breakthrough in AAL. In Ambient Assisted Living; Wichert, R., Eberhardt, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 349–358. [Google Scholar]
- Steggell, C.D.; Hooker, K.; Bowman, S.; Choun, S.; Kim, S.J. The role of technology for healthy aging among Korean and Hispanic women in the United States: A pilot study. Gerontechnology 2010, 9, 443–449. [Google Scholar] [CrossRef]
- Steele, R.; Lo, A.; Secombe, C.; Wong, Y.K. Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. Int. J. Med. Inform. 2009, 78, 788–801. [Google Scholar] [CrossRef] [PubMed]
- Van Hoof, J.; Kort, H.S.; Rutten, P.G.; Duijnstee, M.S.H. Ageing-in-place with the use of ambient intelligence technology: Perspectives of older users. Int. J. Med. Inform. 2011, 80, 310–331. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen-Huber, L.; Boutain, M.; Camp, L.J.; Shankar, K.; Connelly, K.H. Privacy, technology, and aging: A proposed framework. Ageing Int. 2011, 36, 232–252. [Google Scholar] [CrossRef] [Green Version]
- Demiris, G.; Hensel, B.K. Technologies for an aging society: A systematic review of “smart home” applications. Yearb. Med Inform. 2008, 17, 33–40. [Google Scholar]
- Courtney, K.L.; Demeris, G.; Rantz, M.; Skubic, M. Needing smart home technologies: The perspectives of older adults in continuing care retirement communities. Inform. Prim. Care 2008, 16, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmel, S.; Ziefle, M. Smart home medical technologies: Users’ requirements for conditional acceptance. I-COM 2016, 15, 39–50. [Google Scholar] [CrossRef]
- Offermann-van Heek, J.; Ziefle, M.; Himmel, S. Influence of User Factors on the Acceptance of Ambient Assisted Living Technologies in Professional Care Contexts. In Information and Communication Technologies for Ageing Well and e-Health; Bamidis, P., Ziefle, M., Maciaszek, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–25. [Google Scholar]
- Offermann-van Heek, J.; Schomakers, E.M.; Ziefle, M. Bare necessities? How the need for care modulates the acceptance of ambient assisted living technologies. Int. J. Med. Inform. 2019, 127, 147–156. [Google Scholar] [CrossRef]
- Biermann, H.; Offermann-van Heek, J.; Himmel, S.; Ziefle, M. Ambient assisted living as support for aging in place: Quantitative users’ acceptance study on ultrasonic whistles. JMIR Aging 2018, 1, e11825. [Google Scholar] [CrossRef] [PubMed]
Construct | Operationalization | Sensor-Based Technology | |||||||
---|---|---|---|---|---|---|---|---|---|
Overall | PIR | H&T | MAG | ||||||
Min | Max | M | SD | M | SD | M | SD | ||
Perception of Benefits | Recognizing deviations from normal behavior (e.g., leaving but not returning; wandering at night) ** | 1 | 6 | 4.3 | 1.3 | 4.0 | 1.4 | 4.3 | 1.4 |
Triggering alarms (e.g., when objects are not closed properly, in emergency situations) ** | 1 | 6 | 4.2 | 1.4 | 4.4 | 1.4 | 4.5 | 1.3 | |
Automatic reminders (e.g., to ventilate, close doors) ** | 1 | 6 | 3.8 | 1.5 | 4.2 | 1.4 | 4.2 | 1.4 | |
Increased security (e.g., forgotten pot on the stove) ** | 1 | 6 | 4.3 | 1.4 | 4.8 | 1.2 | 4.2 | 1.5 | |
Recognition of changes in movement (e.g., due to medication intake) ** | 1 | 6 | 4.2 | 1.2 | 3.9 | 1.4 | 4.1 | 1.3 | |
Recognition of emergency situations (e.g., being not able to stand up) ** | 1 | 6 | 4.7 | 1.1 | 4.4 | 1.4 | 4.4 | 1.4 | |
Recognition of emergencies (e.g., falls) ** | 1 | 6 | 4.7 | 1.2 | 4.4 | 1.5 | 4.4 | 1.4 | |
Perception of Barriers | Feeling of dependence | 1 | 6 | 3.4 | 1.4 | 3.4 | 1.4 | 3.4 | 1.4 |
Perceived violation of own privacy ** | 1 | 6 | 3.9 | 1.5 | 3.7 | 1.5 | 3.7 | 1.6 | |
Need for a permanent receiver (=collector) | 1 | 6 | 3.6 | 1.3 | 3.6 | 1.4 | 3.5 | 1.4 | |
Perceived harmfulness of signals to health | 1 | 6 | 3.1 | 1.4 | 3.0 | 1.4 | 2.9 | 1.4 | |
Doubts about reliability | 1 | 6 | 3.7 | 1.3 | 3.6 | 1.3 | 3.6 | 1.3 | |
Unintentionally triggered alarms | 1 | 6 | 3.9 | 1.3 | 3.8 | 1.3 | 3.9 | 1.4 | |
Unintentional damage/defects of the sensor (e.g., by dropping). | 1 | 6 | 3.5 | 1.3 | 3.5 | 1.3 | 3.5 | 1.3 | |
Fears of emissions (e.g., noise, light, radio) | 1 | 6 | 3.2 | 1.4 | 3.2 | 1.4 | 3.1 | 1.4 | |
Feeling of surveillance ** | 1 | 6 | 4.0 | 1.2 | 3.8 | 1.5 | 4.0 | 1.6 | |
Acceptance of Assistive Technology | I find the use of such sensors useful. * | 1 | 6 | 4.2 | 1.2 | 4.3 | 1.2 | 4.3 | 1.2 |
I would like to use such sensors in my home. ** | 1 | 6 | 3.3 | 1.4 | 3.5 | 1.4 | 3.5 | 1.4 | |
I can well imagine the use of the sensors. ** | 1 | 6 | 3.7 | 1.4 | 4.0 | 1.4 | 4.0 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offermann, J.; Wilkowska, W.; Poli, A.; Spinsante, S.; Ziefle, M. Acceptance and Preferences of Using Ambient Sensor-Based Lifelogging Technologies in Home Environments. Sensors 2021, 21, 8297. https://doi.org/10.3390/s21248297
Offermann J, Wilkowska W, Poli A, Spinsante S, Ziefle M. Acceptance and Preferences of Using Ambient Sensor-Based Lifelogging Technologies in Home Environments. Sensors. 2021; 21(24):8297. https://doi.org/10.3390/s21248297
Chicago/Turabian StyleOffermann, Julia, Wiktoria Wilkowska, Angelica Poli, Susanna Spinsante, and Martina Ziefle. 2021. "Acceptance and Preferences of Using Ambient Sensor-Based Lifelogging Technologies in Home Environments" Sensors 21, no. 24: 8297. https://doi.org/10.3390/s21248297
APA StyleOffermann, J., Wilkowska, W., Poli, A., Spinsante, S., & Ziefle, M. (2021). Acceptance and Preferences of Using Ambient Sensor-Based Lifelogging Technologies in Home Environments. Sensors, 21(24), 8297. https://doi.org/10.3390/s21248297