Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fatigue Detector
- image acquisition module;
- calibration module;
- data analysis module;
- result visualisation module.
2.2. Eye Closure-Associated Indicators
2.3. Fatigue Symptoms Scales
2.4. Truck Simulator
2.5. Experimental Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Significance of the Results
4.2. Study Limitations
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Department of Transportation Overview of Motor Vehicle Crashes in 2019. U.S. Department of Transportation: Washington, DC, USA, 2020; p. 14. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813060 (accessed on 20 September 2021).
- Fatigue, European Commission: Brussels, Belgium. 2018. Available online: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/ersosynthesis2018-fatigue.pdf (accessed on 20 September 2021).
- Shi, S.-Y.; Tang, W.-Z.; Wang, Y.-Y. A review on fatigue driving detection. ITM Web Conf. 2017, 12, 01019. [Google Scholar] [CrossRef] [Green Version]
- Healey, J.; Picard, R. SmartCar: Detecting driver stress. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000; pp. 218–221. [Google Scholar] [CrossRef]
- Polychronopoulos, A.; Amditis, A.; Bekiaris, E. Information data flow in AWAKE multi-sensor driver monitoring system. In Proceedings of the 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004; pp. 902–906. [Google Scholar] [CrossRef]
- Barr, L.; Howarth, H.; Popkin, S.; Carroll, R.J. A Review and Evaluation of Emerging Driver Fatigue Detection Measures and Technologies; U.S. Department of Transportation: Washington, DC, USA, 2005; p. 27. Available online: https://www.ecse.rpi.edu/~qji/Fatigue/fatigue_report_dot.pdf (accessed on 20 September 2021).
- McKernon, S. A Literature Review on Driver Fatigue Among Drivers in the General Public; NZ Transport Agency: Wellington, New Zeland, 2009; p. 62. Available online: https://www.nzta.govt.nz/assets/resources/research/reports/342/docs/342.pdf (accessed on 20 September 2021).
- Doudou, M.; Bouabdallah, A.; Cherfaoui, V. A light on physiological sensors for efficient driver drowsiness detection system. Sens. Transducers 2018, 224, 39–50. Available online: https://hal.archives-ouvertes.fr/hal-02162758 (accessed on 20 September 2021).
- Khan, M.Q.; Lee, S. A comprehensive survey of driving monitoring and assistance systems. Sensors 2019, 19, 2574. [Google Scholar] [CrossRef] [Green Version]
- Assuncao, A.N.; Aquino, A.L.L.; de Câmara, M.; Santos, R.C.; Guimaraes, R.L.M.; Oliveira, R.A.R. Vehicle driver monitoring through the statistical process control. Sensors 2019, 19, 3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, Q.; Alsheddy, A. Driver fatigue detection systems using multi-sensors, smartphone, and cloud-based computing platforms: A comparative analysis. Sensors 2021, 21, 56. [Google Scholar] [CrossRef]
- Meireles, T.; Dantas, F. A low-cost prototype for driver fatigue detection. Multimodal Technol. Interact. 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, L.; Peng, J.; Wu, Y. Automatic detection of driver fatigue using driving operation information for transportation safety. Sensors 2017, 17, 1212. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, Q.; Chen, S.; Zhou, W.; Chen, L.; Song, L. A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data. Int. J. Distrib. Sens. Netw. 2019, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Hao, K.; Ding, Y. Driver fatigue monitoring system using video images and steering grip force. In Proceedings of the 5th International Conference on Measurement, Instrumentation and Automation, Shenzhen, China, 17–18 September 2016; pp. 610–617. [Google Scholar] [CrossRef] [Green Version]
- Hanowski, R.J.; Bowman, D.; Alden, A.; Wierwille, W.W.; Carroll, R. PERCLOS+: Moving beyond single-metric drowsiness monitors. SAE Tech. Pap. 2008, 1, 2692. [Google Scholar] [CrossRef]
- Bittner, R.; Hána, K.; Poušek, L.; Smrka, P.; Schreib, P.; Vysoký, P. Detecting of fatigue states of a car driver. In Medical Data Analysis; Brause, R.W., Hanisch, E., Eds.; Springer: Berlin, Germany, 2000; pp. 260–274. Available online: https://link.springer.com/content/pdf/10.1007%2F3-540-39949-6.pdf (accessed on 20 September 2021).
- Lee, B.-G.; Chung, W.-Y. A smartphone-based driver safety monitoring system using data fusion. Sensors 2012, 12, 17536–17552. [Google Scholar] [CrossRef]
- Yin, J.; Hu, J.; Mu, Z. Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals. Healthc. Technol. Lett. 2016, 4, 34–38. [Google Scholar] [CrossRef]
- Awais, M.; Badruddin, N.; Drieberg, M. A hybrid approach to detect driver drowsiness utilizing physiological signals to improve system performance and wearability. Sensors 2017, 17, 1991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, J.; Liu, Y.; Zhang, Z.; Wang, Z.; Luo, D.; Zhou, X.; Zhu, M.; Salman, W.; Hu, G.; et al. Design of a fatigue detection system for high-speed trains based on driver vigilance using a wireless wearable EEG. Sensors 2017, 17, 486. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Wang, P.; Hu, J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS ONE 2017, 12, e0188756. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, F.; Nataraj, S.K.; Ahmed, S.F.; Yaacob, S. An approach in determining fatigueness and drowsiness detection using EEG. J. Adv. Res. Dyn. Control. Syst. 2019, 11, 514–523. Available online: https://www.jardcs.org/abstract.php?id=1494 (accessed on 20 September 2021).
- Vesselenyi, T.; Moca, S.; Rus, A.; Mitran, T.; Tătaru, B. Driver drowsiness detection using ANN image processing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012097. [Google Scholar] [CrossRef]
- Lenis, G.; Reichensperger, P.; Sommer, D.; Heinze, C.; Golz, M.; Dössel, O. Detection of microsleep events in a car driving simulation study using electrocardiographic features. Curr. Dir. Biomed. Eng. 2015, 2, 283–287. [Google Scholar] [CrossRef]
- Lotfy, N.E.B.M.; Saparon, A. Detecting drowsy driver using photoplethysmography sensor. AIP Conf. Proc. 2020, 2306, 020027. [Google Scholar] [CrossRef]
- Kircher, A.; Uddman, M.; Sandin, J. Vehicle Control and Drowsiness; Swedish National Road and Transport Research Institute: Linköping, Sweden, 2002. Available online: http://www.diva-portal.org/smash/get/diva2:673709/FULLTEXT01.pdf (accessed on 20 September 2021).
- Wahlstrom, E.; Masoud, O.; Papanikolopoulos, N. Vision-based methods for driver monitoring. In Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China, 12–15 October 2003; pp. 903–908. [Google Scholar] [CrossRef]
- Torkkola, K.; Massey, N.; Wood, C. Driver inattention detection through intelligent analysis of readily available sensors. In Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, Washington, WA, USA, 3–6 October 2004; pp. 326–331. [Google Scholar] [CrossRef]
- Vural, E.; Cetin, M.; Ercil, A.; Littlewort, G.; Bartlett, M.; Movellan, J. Automated drowsiness detection for improved driving safety. In Proceedings of the 4th International Conference on Automotive Technologies, Istanbul, Turkey, 13–14 November 2008; pp. 1–15. [Google Scholar]
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting driver drowsiness based on sensors: A review. Sensors 2012, 12, 16937–16953. [Google Scholar] [CrossRef] [Green Version]
- Wierwille, W.W.; Ellsworth, L.A. Evaluation of driver drowsiness by trained raters. Accid. Anal. Prev. 1994, 26, 571–581. [Google Scholar] [CrossRef]
- Wierwille, W.W.; Ellsworth, L.A.; Wreggit, S.S.; Fairbanks, R.J.; Kirn, C.L. Research on vehicle-based driver status/performance monitoring. In Development, Validation, and Refinement of Algorithms for Detection of Driver Drowsiness; U.S. Department of Transportation: Washington, DC, USA, 1994; p. 247. Available online: https://rosap.ntl.bts.gov/view/dot/2578/dot_2578_DS1.pdf (accessed on 20 September 2021).
- Dinges, D.F.; Mallis, M.M.; Maislin, G.; Powell, J.W. Evaluation of Techniques for Ocular Measurement as an Index of Fatigue and the Basis for Alertness Management; U.S. Department of Transportation: Washington, DC, USA, 1998; p. 116. Available online: https://ntlrepository.blob.core.windows.net/lib/21000/21900/21955/PB99150237.pdf (accessed on 20 September 2021).
- Grace, R.; Byrne, V.E.; Bierman, D.M.; Legrand, J.-M.; Gricourt, D.; Davis, B.K.; Staszewski, J.J.; Carnahan, B. A drowsy driver detection system for heavy vehicles. In Proceedings of the 17th Digital Avionics Systems Conference, Bellevue, WA, USA, 31 October–7 November 1998; pp. 1361–1368. [Google Scholar] [CrossRef]
- Hartley, L.; Horberry, T.; Mabbott, N.; Krueger, G. Review of Fatigue Detection and Prediction Technologies; National Road Transport Commission: Melbourne, Australia, 2000; p. 40. Available online: https://www.ecse.rpi.edu/~qji/Papers/fdpt.pdf (accessed on 20 September 2021).
- Lang, L.; Qi, H. The study of driver fatigue monitor algorithm based on skin color segmentation. In Proceedings of the 2008 International Symposium on Intelligent Information Technology Application Workshops, Shanghai, China, 21–22 December 2008; pp. 463–466. [Google Scholar] [CrossRef]
- Barr, L.; Popkin, S.; Howarth, H. An Evaluation of Emerging Driver Fatigue Detection Measures and Technologies; U.S. Department of Transportation: Washington, DC, USA, 2009; p. 55. Available online: https://rosap.ntl.bts.gov/view/dot/34394/dot_34394_DS1.pdf (accessed on 20 September 2021).
- Zhang, Z.; Zhang, J. A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. Control Theory Appl. 2010, 8, 181–188. [Google Scholar] [CrossRef]
- Sommer, D.; Golz, M. Evaluation of PERCLOS based current fatigue monitoring technologies. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; p. 4. [Google Scholar] [CrossRef]
- Daza, I.G.; Bergasa, L.M.; Bronte, S.; Yebes, J.J.; Almazán, J.; Arroyo, R. Fusion of optimized indicators from Advanced Driver Assistance Systems (ADAS) for driver drowsiness detection. Sensors 2014, 14, 1106–1131. [Google Scholar] [CrossRef]
- Lin, L.; Huang, C.; Ni, X.; Wang, J.; Zhang, H.; Li, X.; Qian, Z. Driver fatigue detection based on eye state. Technol. Health Care 2015, 23, S453–S463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henni, K.; Mezghani, N.; Gouin-Vallerand, C.; Ruer, P.; Ouakrim, Y.; Vallières, E. Feature selection for driving fatigue characterization and detection using visual- and signal-based sensors. Appl. Inform. 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.; Lee, S.J.; Kim, J.; Jung, H.G.; Park, K.R. Vision-based method for detecting driver drowsiness and distraction in driver monitoring system. Opt. Eng. 2011, 50, 127202. [Google Scholar] [CrossRef]
- Lopez de la O., J.; Rodríguez Ibáñez, N.; Nombela González, M.; Barrios Vicente, J.M.; García González, M.A.; Ramos Castro, J.; Fernández-Chimeno, M. Development of a system to test somnolence detectors with drowsy drivers. Procedia—Soc. Behav. Sci. 2012, 48, 2058–2070. [Google Scholar] [CrossRef]
- Sigari, M.-H.; Fathy, M.; Soryani, M. A driver face monitoring system for fatigue and distraction detection. Int. J. Veh. Technol. 2013, 263983. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Zhou, L.; Wang, Y.; Zhang, J.; Liu, J.; Gao, S. A system of driving fatigue detection based on machine vision and its application on smart device. J. Sens. 2015, 548602. [Google Scholar] [CrossRef]
- Poursadeghiyan, M.; Mazloumi, A.; Nasl Saraji, G.; Baneshi, M.M.; Khammar, A.; Ebrahimi, M.H. Using image processing in the proposed drowsiness detection system design. Iran. J. Public Health 2018, 47, 1371–1378. Available online: https://ijph.tums.ac.ir/index.php/ijph/article/view/14593/6119 (accessed on 20 September 2021).
- Bergasa, L.M.; Nuevo, J.; Sotelo, M.A.; Barea, R.; Lopez, M.E. Real-time system for monitoring driver vigilance. IEEE Trans. Intell. Transp. Syst. 2006, 7, 63–77. [Google Scholar] [CrossRef] [Green Version]
- D’Orazio, T.; Leoa, M.; Guaragnella, C.; Distante, A. A visual approach for driver inattention detection. Pattern Recogn. 2007, 40, 2341–2355. [Google Scholar] [CrossRef]
- Jo, J.; Lee, S.J.; Park, K.R.; Kim, I.-G.; Kim, K. Detecting driver drowsiness using feature-level fusion and user-specific classification. Expert Syst. Appl. 2014, 41, 1139–1152. [Google Scholar] [CrossRef]
- Azim, T.; Jaffar, M.A.; Mirza, A.M. Fully automated real time fatigue detection of drivers through Fuzzy Expert Systems. App. Soft. Comput. 2014, 18, 25–38. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, X. Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real-Time Imaging 2002, 8, 357–377. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Zhu, Z.; Lan, P. Real-time nonintrusive monitoring and prediction of driver fatigue. IEEE Trans. Veh. Technol. 2004, 53, 1052–1068. [Google Scholar] [CrossRef] [Green Version]
- Cudalbu, C.; Anastasiu, B.; Radu, R.; Cruceanu, R.; Schmidt, E.; Barth, E. Driver monitoring with a single high-speed camera and IR illumination. In Proceedings of the International Symposium on Signals, Circuits and Systems, Iasi, Romania, 14–15 July 2005; pp. 219–222. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, J.; Ren, M.; Zheng, Y. Driver fatigue detection: A survey. In Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; pp. 8587–8591. [Google Scholar] [CrossRef]
- Bergasa, L.M.; Nuevo, J.; Sotelo, M.A.; Barea, R.; Lopez, E. Visual monitoring of driver inattention. In Computational Intelligence in Automotive Applications. Studies in Computational Intelligence; Prokhorov, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 132, pp. 25–51. [Google Scholar] [CrossRef] [Green Version]
- Lenskiy, A.A.; Lee, J.-S. Driver’s eye blinking detection using novel color and texture segmentation algorithms. Int. J. Control Autom. Syst. 2021, 10, 317–327. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Peeta, S.; He, X.; Li, Y.; Zhu, S. A self-adaptive dynamic recognition model for fatigue driving based on multi-source information and two levels of fusion. Sensors 2015, 15, 24191–24213. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, X.; Peeta, S.; He, X.; Li, Y. A real-time fatigue driving recognition method incorporating contextual features and two fusion levels. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3408–3420. [Google Scholar] [CrossRef]
- Zohoorian Yazdi, M.; Soryani, M. Driver drowsiness detection by identification of yawning and eye closure. Int. J. Automot. Eng. 2019, 9, 3033–3044. [Google Scholar] [CrossRef]
- Subbarao, A.; Sahithya, K. Driver drowsiness detection system for vehicle safety. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 815–819. Available online: https://www.ijitee.org/wp-content/uploads/papers/v8i6s4/F11640486S419.pdf (accessed on 20 September 2021).
- Espinosa, J.; Domenech, B.; Vázquez, C.; Pérez, J.; Mas, D. Blinking characterization from high speed video records. Application to biometric authentication. PLoS ONE 2018, 13, e0196125. [Google Scholar] [CrossRef] [Green Version]
- Aravind, A.; Agarwal, A.; Jaiswal, A.; Panjiyara, A.; Shastry, M. Fatigue detection system based on eye blinks of drivers. Int. J. Eng. Adv. Technol. 2019, 8, 72–75. Available online: https://www.ijeat.org/wp-content/uploads/papers/v8i5S/E10150585S19.pdf (accessed on 20 September 2021).
- Xu, J.; Min, J.; Hu, J. Real-time eye tracking for the assessment of driver fatigue. Healthc. Technol. Lett. 2018, 5, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.M.; Singh, D.; Jugran, S.; Punia, P.; Negi, V. A system on intelligent driver drowsiness detection method. Int. J. Eng. Technol. 2018, 7, 160–162. [Google Scholar] [CrossRef]
- Kundinger, T.; Riener, A.; Sofra, N. A robust drowsiness detection method based on vehicle and driver vital data. In Mensch und Computer 2017 Proceedings of Workshopband, Regensburg, Germany, 10–13 September 2017; Burghardt, M., Wimmer, R., Wolff, C., Womser-Hacker, C., Eds.; Gesellschaft für Informatik e.V.: Regensburg, Germany, 2017; pp. 434–440. [Google Scholar] [CrossRef]
- Doudou, M.; Bouabdallah, A.; Berge-Cherfaoui, V. Driver drowsiness measurement technologies: Current research, market solutions, and challenges. Int. J. ITS Res. 2020, 18, 297–319. [Google Scholar] [CrossRef]
- Dziuda, Ł.; Murawski, K.; Dziwosz, M.; Krej, M.; Piotrowski, M.; Baran, P. Construction of a detector of fatigue symptoms in car drivers. Pol. J. Aviat. Med. Bioeng. Psychol. 2018, 24, 23–29. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, F.; Tang, J. Real-time system for driver fatigue detection by RGB-D camera. ACM Trans. Intell. Syst. Technol. 2015, 6, 22. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 2000, 120, 122–125. Available online: https://www.drdobbs.com/open-source/the-opencv-library/184404319 (accessed on 20 September 2021).
- Nieznański, M.; Gasiul, H.; Strus, W.; Obidziński, M.; Kobos, Z.; Rowiński, T. Relationship between self-reported symptoms of fatigue and cognitive performance: Switch cost as a sensitive indicator of fatigue. Psihol. Teme 2020, 29, 199–228. [Google Scholar] [CrossRef]
- Baran, P.; Krej, M.; Piotrowski, M.; Dziuda, Ł. Technical properties and research capabilities of the truck simulator owned by the Military Institute of Aviation Medicine—A new perspective in research on truck drivers. Pol. J. Aviat. Med. Bioeng. Psychol. 2019, 25, 26–31. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson Education: Boston, MA, USA, 2007. [Google Scholar]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmertest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, R.D.; Hedeker, D.R.; Davis, J.M. Estimation of effect size from a series of experiments involving paired comparisons. J. Educ. Stat. 1993, 18, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.J.D. The BOBYQUA Algorithm for Bound Constrained Optimization without Derivatives; Department of Applied Mathematics and Theoretical Physics: Cambridge, UK, 2009; p. 39. Available online: https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf (accessed on 20 September 2021).
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The coefficient of determination R² and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Hox, J. Multilevel Analysis Techniques and Applications; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2002. [Google Scholar]
Subject | State | PERCLOS (−) | ECD (Frame) | FEC (−) |
---|---|---|---|---|
1 | R | |||
D | ||||
2 | R | |||
D | ||||
3 | R | |||
D | ||||
4 | R | |||
D | ||||
5 | R | |||
D | ||||
6 | R | |||
D | ||||
7 | R | |||
D | ||||
8 | R | |||
D |
Pre-Test | Post-Test | ||||||
---|---|---|---|---|---|---|---|
t | p | d | |||||
Mean | SD | Mean | SD | ||||
Rested | |||||||
PERCLOS | 0.036 | 0.031 | 0.072 | 0.047 | 3.277 | 0.014 | 0.793 |
ECD | 16.511 | 7.556 | 18.770 | 5.304 | 1.152 | 0.287 | 0.326 |
FEC | 3.013 | 2.398 | 6.313 | 3.710 | 4.340 | 0.003 | 0.877 |
FSS-S | 8.875 | 13.994 | 23.500 | 29.189 | 2.534 | 0.039 | 0.265 |
Drowsy | |||||||
PERCLOS | 0.082 | 0.081 | 0.151 | 0.142 | 2.478 | 0.042 | 0.408 |
ECD | 21.254 | 10.073 | 23.542 | 21.640 | 0.446 | 0.669 | 0.094 |
FEC | 5.338 | 4.331 | 11.336 | 6.623 | 3.274 | 0.014 | 1.006 |
FSS-S | 42.875 | 29.541 | 41.250 | 34.075 | 0.266 | 0.798 | 0.049 |
Model | AIC | −2 Log Likelihood | df | χ2 |
---|---|---|---|---|
M1 Intercepts only | 297.5 | 289.46 | 4 | |
M2 Time variable | 297.4 | 287.44 | 5 | M2 − M1 = 2.024 |
M3 Final (PERCLOS) | 295.9 | 283.90 | 6 | M3 − M2 = 3.573 |
M4 Final (ECD) | 293.8 | 281.77 | 6 | M4 − M2 = 5.673 * |
M5 Final (FEC) | 298.6 | 286.56 | 6 | M5 − M2 = 0.883 |
Effect | Parameter Estimate | Standard Error | t-Value | p (2-Sided) | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Random effects at level 3 (subjects) | ||||||
Intercepts | 237.17 | - | - | - | 0.000 | 11,154.32 |
Random effects at level 2 (task conditions) | ||||||
Intercepts | 216.98 | - | - | - | 2.503 | 899.07 |
Random effects at level 1 (measurement occasions) | ||||||
Residuals | 177.71 | - | - | - | 91.85 | 404.97 |
Fixed effects (averaged over task conditions and persons) | ||||||
Intercepts | 28.859 | 7.503 | 3.846 | 0.004 | 12.069 | 44.951 |
Time | 0.532 | 5.443 | 0.098 | 0.923 | −11.456 | 11.548 |
PERCLOS (scaled) | 10.571 | 4.823 | 2.192 | 0.036 | −0.410 | −21.191 |
Effect | Parameter Estimate | Standard Error | t-Value | p (2-Sided) | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Random effects at level 3 (subjects) | ||||||
Intercepts | 131.58 | - | - | - | 0.00 | 906.83 |
Random effects at level 2 (task conditions) | ||||||
Intercepts | 269.56 | - | - | - | 41.08 | 931.88 |
Random effects at level 1 (measurement occasions) | ||||||
Residuals | 163.98 | - | - | - | 84.66 | 380.96 |
Fixed effects (averaged over task conditions and persons) | ||||||
Intercepts | 26.935 | 6.610 | 4.075 | 0.003 | 12.150 | 41.409 |
Time | 4.380 | 4.591 | 0.954 | 0.356 | −5.542 | 13.828 |
ECD (scaled) | 11.611 | 4.183 | 2.776 | 0.009 | 2.089 | 21.631 |
Effect | Parameter Estimate | Standard Error | t-Value | p (2-Sided) | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Random effects at level 3 (subjects) | ||||||
Intercepts | 347.27 | - | - | - | 0.00 | 1742.12 |
Random effects at level 2 (task conditions) | ||||||
Intercepts | 474.89 | - | - | - | 99.49 | 1695.55 |
Random effects at level 1 (measurement occasions) | ||||||
Residuals | 126.27 | - | - | - | 64.58 | 309.98 |
Fixed effects (averaged over task conditions and persons) | ||||||
Intercepts | 23.374 | 9.225 | 1.534 | 0.031 | 2.713 | 43.387 |
Time | 11.501 | 5.679 | 2.025 | 0.058 | −3.261 | 23.299 |
FEC (scaled) | −5.697 | 4.622 | −1.233 | 0.230 | −15.892 | 7.399 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziuda, Ł.; Baran, P.; Zieliński, P.; Murawski, K.; Dziwosz, M.; Krej, M.; Piotrowski, M.; Stablewski, R.; Wojdas, A.; Strus, W.; et al. Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study. Sensors 2021, 21, 6449. https://doi.org/10.3390/s21196449
Dziuda Ł, Baran P, Zieliński P, Murawski K, Dziwosz M, Krej M, Piotrowski M, Stablewski R, Wojdas A, Strus W, et al. Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study. Sensors. 2021; 21(19):6449. https://doi.org/10.3390/s21196449
Chicago/Turabian StyleDziuda, Łukasz, Paulina Baran, Piotr Zieliński, Krzysztof Murawski, Mariusz Dziwosz, Mariusz Krej, Marcin Piotrowski, Roman Stablewski, Andrzej Wojdas, Włodzimierz Strus, and et al. 2021. "Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study" Sensors 21, no. 19: 6449. https://doi.org/10.3390/s21196449
APA StyleDziuda, Ł., Baran, P., Zieliński, P., Murawski, K., Dziwosz, M., Krej, M., Piotrowski, M., Stablewski, R., Wojdas, A., Strus, W., Gasiul, H., Kosobudzki, M., & Bortkiewicz, A. (2021). Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study. Sensors, 21(19), 6449. https://doi.org/10.3390/s21196449