CIR-Based Device-Free People Counting via UWB Signals
Abstract
:1. Introduction
2. Related Works and Contribution
3. Proposed Counting System and Feature Extraction
4. Experimental Set-Up
- Room A: it is a room, where furniture is mainly placed close to the walls and people can move rather freely;
- Room B: it is a room, where furniture is placed also in the middle of the room and people movements are more constrained.
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Nguyen, C.T.; Saputra, Y.M.; Huynh, N.V.; Nguyen, N.T.; Khoa, T.V.; Tuan, B.M.; Nguyen, D.N.; Hoang, D.T.; Vu, T.X.; Dutkiewicz, E.; et al. A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part I: Fundamentals and Enabling Technologies. IEEE Access 2020, 8, 153479–153507. [Google Scholar] [CrossRef]
- Bouhlel, F.; Hazar, M.; Hammami, M. Crowd Behavior Analysis based on Convolutional Neural Network: Social Distancing Control COVID-19. In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)—Volume 5: VISAPP, Scitepress, Vienna, Austria, 8–10 February 2021; pp. 273–280. [Google Scholar] [CrossRef]
- Sardar, S.; Mishra, A.K.; Khan, M.Z.A. Crowd Size Estimation Using CommSense Instrument for COVID-19 Echo Period. IEEE Consum. Electron. Mag. 2021, 10, 92–97. [Google Scholar] [CrossRef]
- Rezaei, M.; Azarmi, M. DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment in COVID-19 Pandemic. Appl. Sci. 2020, 10, 7514. [Google Scholar] [CrossRef]
- Cianca, E.; De Sanctis, M.; Di Domenico, S. Radios as Sensors. IEEE Internet Things J. 2016. [Google Scholar] [CrossRef]
- Bartoletti, S.; Conti, A.; Win, M.Z. Device-Free Counting via Wideband Signals. IEEE J. Sel. Areas Commun. 2017, 35, 1163–1174. [Google Scholar] [CrossRef]
- Ruan, W. Unobtrusive human localization and activity recognition for supporting independent living of the elderly. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, NSW, Australia, 14–18 March, 2016; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, J.; Chen, Y.; Liu, H.; Gruteser, M.; Martin, R.P. Tracking Human Queues Using Single-point Signal Monitoring. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, Bretton Woods, NH, USA, 16–19 June 2014; MobiSys ’14; ACM: New York, NY, USA, 2014; pp. 42–54. [Google Scholar] [CrossRef] [Green Version]
- Groba, C. Demonstrations and people-counting based on Wifi probe requests. In Proceedings of the, Limerick, Ireland, 15–18 April 2019; pp. 596–600. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Huang, K.; Tan, T. Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- De Sanctis, M.; Cianca, E.; Di Domenico, S.; Provenziani, D.; Bianchi, G.; Ruggieri, M. WIBECAM: Device Free Human Activity Recognition Through WiFi Beacon-Enabled Camera. In Proceedings of the 2nd Workshop on Physical Analytics, WPA’15, Florence, Italy, 22 May 2015; ACM: New York, NY, USA, 2015; pp. 7–12. [Google Scholar] [CrossRef]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Understanding and Modeling of WiFi Signal Based Human Activity Recognition. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, MobiCom ’15, Paris, France, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 65–76. [Google Scholar]
- Olama, M.M.; Kuruganti, T.; Bobrek, M.; Killough, S.; Nutaro, J.J.; Thakur, G.S. Real-time cellular activity monitoring using LTE radio measurements. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- De Sanctis, M.; Rossi, T.; Di Domenico, S.; Cianca, E.; Ligresti, G.; Ruggieri, M. LTE Signals for Device-Free Crowd Density Estimation Through CSI Secant Set and SVD. IEEE Access 2019, 7, 159943–159951. [Google Scholar] [CrossRef]
- Yang, X.; Yin, W.; Li, L.; Zhang, L. Dense People Counting Using IR-UWB Radar With a Hybrid Feature Extraction Method. IEEE Geosci. Remote Sens. Lett. 2019, 16, 30–34. [Google Scholar] [CrossRef]
- Choi, J.W.; Yim, D.H.; Cho, S.H. People Counting Based on an IR-UWB Radar Sensor. IEEE Sens. J. 2017, 17, 5717–5727. [Google Scholar] [CrossRef]
- Mohammadmoradi, H.; Yin, S.; Gnawali, O. Room Occupancy Estimation through Wifi, UWB, and Light Sensors Mounted on Doorways, ICSDE ’17; Association for Computing Machinery: New York, NY, USA, 2017; pp. 27–34. [Google Scholar] [CrossRef]
- Haferkamp, M.; Sliwa, B.; Wietfeld, C. A Low Cost Modular Radio Tomography System for Bicycle and Vehicle Detection and Classification. arXiv 2021, arXiv:eess.SP/2102.06107. [Google Scholar]
- Di Domenico, S.; De Sanctis, M.; Cianca, E.; Bianchi, G. A Trained-once Crowd Counting Method Using Differential WiFi Channel State Information. In Proceedings of the 3rd International on Workshop on Physical Analytics, WPA ’16, Singapore, 26 June 2016; pp. 37–42. [Google Scholar]
- Xi, W.; Zhao, J.; Li, X.; Zhao, K.; Tang, S.; Liu, X.; Jiang, Z. Electronic frog eye: Counting crowd using WiFi. In Proceedings of the 2014 IEEE Conference on Computer Communications, INFOCOM 2014, Toronto, ON, Canada, 27 April–2 May 2014; pp. 361–369. [Google Scholar]
- Depatla, S.; Muralidharan, A.; Mostofi, Y. Occupancy Estimation Using Only WiFi Power Measurements. Sel. Areas Commun. IEEE J. 2015, 33, 1381–1393. [Google Scholar] [CrossRef]
- Pecoraro, G.; Di Domenico, S.; Cianca, E.; De Sanctis, M. CSI-based fingerprinting for indoor localization using LTE Signals. EURASIP J. Adv. Signal Process. 2018, 2018, 49. [Google Scholar] [CrossRef] [Green Version]
- Salah, A.A.; Abdullah, R.S.A.R.; Ismail, A.; Hashim, F.; Aziz, N.H.A. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications. Electron. Lett. 2014, 50, 545–547. [Google Scholar] [CrossRef]
- Bartoletti, S.; Conti, A.; Win, M.Z. Passive radar via LTE signals of opportunity. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sidney, Australia, 10–14 June 2014; pp. 181–185. [Google Scholar] [CrossRef]
- Pecoraro, G.; Di Domenico, S.; Cianca, E.; De Sanctis, M. LTE signal fingerprinting localization based on CSI. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Zaki, M.J.; Meira, W., Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: New York, NY, USA, 2014; ISBN 0521766338. [Google Scholar]
- Yoshida, T.; Taniguchi, Y. Estimating the number of people using existing WiFi access point in indoor environment. In Proceedings of the 6th European Conference of Computer Science (ECCS ’15), Rome, Italy, 7–9 November 2015; pp. 46–53. [Google Scholar]
- Di Domenico, S.; Pecoraro, G.; Cianca, E.; De Sanctis, M. Trained-once device-free crowd counting and occupancy estimation using WiFi: A Doppler spectrum based approach. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016; pp. 1–8. [Google Scholar]
Predicted | ||||||
---|---|---|---|---|---|---|
Empty | 1 | 2 | 3 | 4 | 5 | |
empty | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0.94 | 0.06 |
5 | 0 | 0 | 0 | 0 | 0.17 | 0.83 |
Predicted | ||||||
---|---|---|---|---|---|---|
Empty | 1 | 2 | 3 | 4 | 5 | |
empty | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0.98 | 0.02 | 0 |
4 | 0 | 0 | 0 | 0.04 | 0.96 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 1 |
Predicted | ||||||
---|---|---|---|---|---|---|
Empty | 1 | 2 | 3–4 | 5–6 | 7–8 | |
empty | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0.79 | 0.13 | 0.08 |
4 | 0 | 0 | 0 | 0.26 | 0.74 | 0 |
5 | 0 | 0 | 0 | 0 | 0.36 | 0.64 |
Predicted | ||||||
---|---|---|---|---|---|---|
Empty | 1 | 2 | 3-4 | 5-6 | 7-8 | |
empty | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0.86 | 0.1 | 0.03 |
4 | 0 | 0 | 0 | 0.11 | 0.69 | 0.2 |
5 | 0 | 0 | 0 | 0.02 | 0.18 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sanctis, M.; Conte, A.; Rossi, T.; Di Domenico, S.; Cianca, E. CIR-Based Device-Free People Counting via UWB Signals. Sensors 2021, 21, 3296. https://doi.org/10.3390/s21093296
De Sanctis M, Conte A, Rossi T, Di Domenico S, Cianca E. CIR-Based Device-Free People Counting via UWB Signals. Sensors. 2021; 21(9):3296. https://doi.org/10.3390/s21093296
Chicago/Turabian StyleDe Sanctis, Mauro, Aleandro Conte, Tommaso Rossi, Simone Di Domenico, and Ernestina Cianca. 2021. "CIR-Based Device-Free People Counting via UWB Signals" Sensors 21, no. 9: 3296. https://doi.org/10.3390/s21093296
APA StyleDe Sanctis, M., Conte, A., Rossi, T., Di Domenico, S., & Cianca, E. (2021). CIR-Based Device-Free People Counting via UWB Signals. Sensors, 21(9), 3296. https://doi.org/10.3390/s21093296