Attention-Deficit/Hyperactivity Disorder (ADHD): Integrating the MOXO-dCPT with an Eye Tracker Enhances Diagnostic Precision
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.2.1. MOXO-dCPT
2.2.2. Eye Tracking Apparatus
2.3. Procedure
2.4. Data Analysis
2.4.1. Preliminary Procedures and Analysis
2.4.2. Primary Analysis (Complete MOXO/All Stages)
2.4.3. Exploratory Analysis (Visual Distractors Stage Only)
3. Results
3.1. Preliminary Analysis
3.2. Primary Analysis (Complete MOXO/All Stages)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Statements
References
- American_Psychological_Association. Specialty guidelines for forensic psychology. Am. Psychol. 2013, 68, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Biederman, J.; Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychol. Med. 2006, 36, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.; Milich, R.; Barkley, R.A. Primary Symptoms, Diagnostic Criteria, Subtyping, and Prevalence of ADHD (Ch. 2). In Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment; Barkley, R.A., Ed.; Guilford: New York, NY, USA, 2015; pp. 51–80. [Google Scholar]
- Faraone, S.V.; Rostain, A.L.; Blader, J.; Busch, B.; Childress, A.C.; Connor, D.F.; Newcorn, J.H. Practitioner Review: Emotional dysregulation in attention-deficit/hyperactivity disorder—Implications for clinical recognition and intervention. J. Child Psychol. Psychiatry Allied Discip. 2019, 60, 133–150. [Google Scholar] [CrossRef]
- Pievsky, M.A.; McGrath, R.E. The Neurocognitive Profile of Attention-Deficit/Hyperactivity Disorder: A Review of Meta-Analyses. Arch. Clin. Neuropsychol. 2018, 33, 143–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, L.E.; Hodgkins, P.; Kahle, J.; Madhoo, M.; Kewley, G. Long-Term Outcomes of ADHD: Academic Achievement and Performance. J. Atten. Disord. 2020, 24, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Spencer, T.J.; Faraone, S.V.; Biederman, J. Adult Outcome of ADHD: An Overview of Results from the MGH Longitudinal Family Studies of Pediatrically and Psychiatrically Referred Youth with and Without ADHD of Both Sexes. J. Atten. Disord. 2018, 22, 523–534. [Google Scholar] [CrossRef]
- Seixas, M.; Weiss, M.; Muller, U. Systematic review of national and international guidelines on attention-deficit hyperactivity disorder. J. Psychopharmacol. 2012, 26, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Kosmas, C.E.; Patel, C.; Doll, H.; Asherson, P. Health-Related Quality of Life and Work Productivity of Adults With ADHD: A U.K. Web-Based Cross-Sectional Survey. J. Atten. Disord. 2019, 23, 1610–1623. [Google Scholar] [CrossRef]
- Nimmo-Smith, V.; Merwood, A.; Hank, D.; Brandling, J.; Greenwood, R.; Skinner, L.; Law, S.; Patel, V.; Rai, D. Non-pharmacological interventions for adult ADHD: A systematic review. Psychol. Med. 2020, 50, 529–541. [Google Scholar] [CrossRef]
- Hall, C.L.; Valentine, A.Z.; Groom, M.J.; Walker, G.M.; Sayal, K.; Daley, D.; Hollis, C. The clinical utility of the continuous performance test and objective measures of activity for diagnosing and monitoring ADHD in children: A systematic review. Eur. Child Adolesc. Psychiatry 2016, 25, 677–699. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, B.; Uebel-von Sandersleben, H.; Wiedmann, K.; Rothenberger, A. ADHD history of the concept: The case of the continuous performance test. Curr. Dev. Disord. Rep. 2015, 2, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.; Hoelzle, J.; Nikolas, M. Diagnosing Attention-Deficit/Hyperactivity Disorder (ADHD) in young adults: A qualitative review of the utility of assessment measures and recommendations for improving the diagnostic process. Clin. Neuropsychol. 2019, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Baggio, S.; Hasler, R.; Giacomini, V.; El-Masri, H.; Weibel, S.; Perroud, N.; Deiber, M.P. Does the Continuous Performance Test Predict ADHD Symptoms Severity and ADHD Presentation in Adults? J. Atten. Disord. 2020, 24, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Shaked, D.; Faulkner, L.M.D.; Tolle, K.; Wendell, C.R.; Waldstein, S.R.; Spencer, R.J. Reliability and validity of the Conners’ Continuous Performance Test. Appl. Neuropsychol. Adult 2019, 1–10. [Google Scholar] [CrossRef]
- De Silva, S.; Dayarathna, S.; Ariyarathne, G.; Meedeniya, D.; Jayarathna, S. A survey of attention deficit hyperactivity disorder identification using psychophysiological data. Int. J. Online Biomed. Eng. (IJOE) 2019, 15, 61–76. [Google Scholar] [CrossRef]
- Karamacoska, D.; Barry, R.J.; De Blasio, F.M.; Steiner, G.Z. EEG-ERP dynamics in a visual Continuous Performance Test. Int. J. Psychophysiol. 2019, 146, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, M.; La Montagna, M.; D’Urso, F.; Daniele, A.; Greco, A.; Seripa, D.; Logroscino, G.; Bellomo, A.; Panza, F. The role of biomarkers in psychiatry (ch. 7). In Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders; Guest, P.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 135–162. [Google Scholar]
- Thome, J.; Ehlis, A.C.; Fallgatter, A.J.; Krauel, K.; Lange, K.W.; Riederer, P.; Romanos, M.; Taurines, R.; Tucha, O.; Uzbekov, M.; et al. Biomarkers for attention-deficit/hyperactivity disorder (ADHD). A consensus report of the WFSBP task force on biological markers and the World Federation of ADHD. World J. Biol. Psychiatry 2012, 13, 379–400. [Google Scholar] [CrossRef]
- Yarbus, A.L. Eye Movements and Vision; Plenum Press: New York, NY, USA, 1967. [Google Scholar]
- Duchowski, A.T. Eye Tracking Methodology: Theory and Practice, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Siqueiros Sanchez, M.; Falck-Ytter, T.; Kennedy, D.P.; Bolte, S.; Lichtenstein, P.; D’Onofrio, B.M.; Pettersson, E. Volitional eye movement control and ADHD traits: A twin study. J. Child Psychol. Psychiatry Allied Discip. 2020. [Google Scholar] [CrossRef]
- Nigg, J.T. Is ADHD a disinhibitory disorder? Psychol. Bull. 2001, 127, 571–598. [Google Scholar] [CrossRef]
- Levantini, V.; Muratori, P.; Inguaggiato, E.; Masi, G.; Milone, A.; Valente, E.; Tonacci, A.; Billeci, L. EYES Are the Window to the Mind: Eye-Tracking Technology as a Novel Approach to Study Clinical Characteristics of ADHD. Psychiatry Res. 2020, 290, 113135. [Google Scholar] [CrossRef]
- Manoli, A.; Liversedge, S.P.; Sonuga-Barke, E.J.S.; Hadwin, J.A. The Differential Effect of Anxiety and ADHD Symptoms on Inhibitory Control and Sustained Attention for Threat Stimuli: A Go/No-Go Eye-Movement Study. J. Atten. Disord. 2020. [Google Scholar] [CrossRef]
- Muhlberger, A.; Jekel, K.; Probst, T.; Schecklmann, M.; Conzelmann, A.; Andreatta, M.; Rizzo, A.A.; Pauli, P.; Romanos, M. The Influence of Methylphenidate on Hyperactivity and Attention Deficits in Children With ADHD: A Virtual Classroom Test. J. Atten. Disord. 2020, 24, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Fried, M.; Tsitsiashvili, E.; Bonneh, Y.S.; Sterkin, A.; Wygnanski-Jaffe, T.; Epstein, T.; Polat, U. ADHD subjects fail to suppress eye blinks and microsaccades while anticipating visual stimuli but recover with medication. Vis. Res. 2014, 101, 62–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lev, A.; Braw, Y.; Elbaum, T.; Wagner, M.; Rassovsky, Y. Eye Tracking During a Continuous Performance Test (CPT): Utility for Assessing Attention-Deficit/Hyperactivity Disorder (ADHD) Patients. J. Atten. Disord. 2020. accepted for publication. [Google Scholar]
- Dobrakowski, P.; Lebecka, G. Individualized Neurofeedback Training May Help Achieve Long-Term Improvement of Working Memory in Children With ADHD. Clin. EEG Neurosci. 2020, 51, 94–101. [Google Scholar] [CrossRef]
- Ben-Sheetrit, J.; Tasker, H.; Avnat, L.; Golubchik, P.; Weizman, A.; Manor, I. Possible Age-Related Progression of Attentional Impairment in ADHD and Its Attenuation by Past Diagnosis and Treatment. J. Atten. Disord. 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, N.; Lavidor, M. Null tDCS Effects in a Sustained Attention Task: The Modulating Role of Learning. Front. Psychol. 2018, 9, 476. [Google Scholar] [CrossRef] [Green Version]
- Shahaf, G.; Nitzan, U.; Erez, G.; Mendelovic, S.; Bloch, Y. Monitoring Attention in ADHD with an Easy-to-Use Electrophysiological Index. Front. Hum. Neurosci. 2018, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Slobodin, O.; Blankers, M.; Kapitany-Foveny, M.; Kaye, S.; Berger, I.; Johnson, B.; Demetrovics, Z.; van den Brink, W.; van de Glind, G. Differential Diagnosis in Patients with Substance Use Disorder and/or Attention-Deficit/Hyperactivity Disorder Using Continuous Performance Test. Eur. Addict. Res. 2020, 26, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Slobodin, O.; Davidovitch, M. Gender Differences in Objective and Subjective Measures of ADHD among Clinic-Referred Children. Front. Hum. Neurosci. 2019, 13, 441. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Halevy, A.; Aharon, S.; Shuper, A. Attention Deficit Hyperactivity Disorder in Neurofibromatosis Type 1: Evaluation with a Continuous Performance Test. J. Clin. Neurol. 2018, 14, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Cymberknoh, M.; Tanny, T.; Breuer, O.; Blau, H.; Mussaffi, H.; Kadosh, D.; Gartner, S.; Salinas, A.; Bentur, L.; Nir, V.; et al. Attention deficit hyperactivity disorder symptoms in patients with cystic fibrosis. J. Cyst. Fibros. 2018, 17, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Peled, J.; Cassuto, H.; Berger, I. Processing speed as a marker to stimulant effect in clinical sample of children with high functioning autism spectrum disorder. Nord. J. Psychiatry 2020, 74, 163–167. [Google Scholar] [CrossRef]
- Berger, I.; Cassuto, H. The effect of environmental distractors incorporation into a CPT on sustained attention and ADHD diagnosis among adolescents. J. Neurosci. Methods 2014, 222, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Cassuto, H.; Ben-Simon, A.; Berger, I. Using environmental distractors in the diagnosis of ADHD. Front. Hum. Neurosci. 2013, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.L.; Simoes, E.D.; Carvalho, A.L.N. Association between Auditory and Visual Continuous Performance Tests in Students with ADHD. J. Atten. Disord. 2019, 23, 635–640. [Google Scholar] [CrossRef]
- American_Psychiatric_Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- First, M.B.; Williams, J.B.W.; Karg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5-Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV); American Psychiatric Association: Arlington, VA, USA, 2015. [Google Scholar]
- Berger, C.; Lev, A.; Braw, Y.; Elbaum, T.; Wagner, M.; Rassovsky, Y. Detection of Feigned ADHD Using the MOXO-d-CPT. J. Atten. Disord. 2019, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gibaldi, A.; Vanegas, M.; Bex, P.J.; Maiello, G. Evaluation of the Tobii EyeX Eye tracking controller and Matlab toolkit for research. Behav. Res. Methods 2017, 49, 923–946. [Google Scholar] [CrossRef] [Green Version]
- Dalmaijer, S.E. Is the Low-Cost EyeTribe Eye Tracker Any Good for Research? Available online: https://doi.org/10.7287/peerj.preprints.585v1 (accessed on 10 July 2020).
- Van Renswoude, D.R.; Raijmakers, M.E.J.; Koornneef, A.; Johnson, S.P.; Hunnius, S.; Visser, I. Gazepath: An eye-tracking analysis tool that accounts for individual differences and data quality. Behav. Res. Methods 2018, 50, 834–852. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Adler, L.; Ames, M.; Demler, O.; Faraone, S.; Hiripi, E.; Howes, M.J.; Jin, R.; Secnik, K.; Spencer, T.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychol. Med. 2005, 35, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohar, A.H.; Konfortes, H. Diagnosing ADHD in Israeli adults: The psychometric properties of the adult ADHD Self Report Scale (ASRS) in Hebrew. Isr. J. Psychiatry Relat. Sci. 2010, 47, 308–315. [Google Scholar]
- Ward, M.F.; Wender, P.H.; Reimherr, F.W. The Wender Utah Rating-Scale—An Aid in the Retrospective Diagnosis of Childhood Attention-Deficit Hyperactivity Disorder. Am. J. Psychiatry 1993, 150, 885–890. [Google Scholar]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analyses for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logisitic Regression, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Ginsberg, E.S.; Rinehart, N.; Fielding, J. Exploration of gaze-arrow stimuli in a cued paradigm of overt attention. Psychol. Neurosci. 2018, 11, 266. [Google Scholar] [CrossRef]
- Holmqvist, K.; Andersson, R. Eye Tracking: A Comprehensive Guide to Methods, Paradigms and Measures, 2nd ed.; Lund Eye-Tracking Research Institute: Lund, Sweden, 2017. [Google Scholar]
- SR_Research. EyeLink Data Viewer User’s Manual 4.1.1; SR Research Ltd.: Mississauga, ON, Canada, 2019. [Google Scholar]
- LeRoy, A.; Jacova, C.; Young, C. Neuropsychological Performance Patterns of Adult ADHD Subtypes. J. Atten. Disord. 2019, 23, 1136–1147. [Google Scholar] [CrossRef]
- Vakil, E.; Mass, M.; Schiff, R. Eye Movement Performance on the Stroop Test in Adults with ADHD. J. Atten. Disord. 2019, 23, 1160–1169. [Google Scholar] [CrossRef]
- Hodgson, T.L.; Ezard, G.; Frouke, H. Eye Movements in Neuropsychological Tasks. In Processes of Visuospatial Attention and Working Memory; Hodgson, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 393–418. [Google Scholar]
- Doyle, A.E. Executive functions in attention-deficit/hyperactivity disorder. J. Clin. Psychiatry 2006, 67, 21–26. [Google Scholar] [PubMed]
- Barkley, R.A. Response inhibition in attention-deficit hyperactivity disorder. Ment. Retard. Dev. Disabil. Res. Rev. 1999, 5, 177–184. [Google Scholar] [CrossRef]
- Muller, A.; Vetsch, S.; Pershin, I.; Candrian, G.; Baschera, G.M.; Kropotov, J.D.; Kasper, J.; Rehim, H.A.; Eich, D. EEG/ERP-based biomarker/neuroalgorithms in adults with ADHD: Development, reliability, and application in clinical practice. World J. Biol. Psychiatry 2020, 21, 172–182. [Google Scholar] [CrossRef]
- Jimenez, E.C.; Avella-Garcia, C.; Kustow, J.; Cubbin, S.; Corrales, M.; Richarte, V.; Esposito, F.L.; Morata, I.; Perera, A.; Varela, P.; et al. Eye Vergence Responses During an Attention Task in Adults With ADHD and Clinical Controls. J. Atten. Disord. 2020. [Google Scholar] [CrossRef]
- Roebuck, H.; Freigang, C.; Barry, J.G. Continuous Performance Tasks: Not Just About Sustaining Attention. J. Speech Lang. Hear. Res. 2016, 59, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Scharke, W.; Reindl, V.; Fels, J.; Neuschaefer-Rube, C.; Konrad, K. Auditory and Visual Response Inhibition in Children with Bilateral Hearing Aids and Children with ADHD. Brain Sci. 2020, 10, 307. [Google Scholar] [CrossRef]
- Lin, H.Y.; Hsieh, H.C.; Lee, P.; Hong, F.Y.; Chang, W.D.; Liu, K.C. Auditory and Visual Attention Performance in Children With ADHD: The Attentional Deficiency of ADHD Is Modality Specific. J. Atten. Disord. 2017, 21, 856–864. [Google Scholar] [CrossRef]
- Wilens, T.E.; Biederman, J.; Faraone, S.V.; Martelon, M.; Westerberg, D.; Spencer, T.J. Presenting ADHD symptoms, subtypes, and comorbid disorders in clinically referred adults with ADHD. J. Clin. Psychiatry 2009, 70, 1557–1562. [Google Scholar] [CrossRef] [Green Version]
- Sedgwick, J.A. University students with attention deficit hyperactivity disorder (ADHD): A literature review. Ir. J. Psychol. Med. 2018, 35, 221–235. [Google Scholar] [CrossRef]
- Barkley, R.A. Comorbid psychiatric disorders and psychological maladjustment in adults with ADHD. In Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment, 4th ed.; Barkley, R.A., Ed.; Guilford Press: New York, NY, USA, 2015; pp. 343–355. [Google Scholar]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Chica, A.B.; Bartolomeo, P.; Lupianez, J. Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav. Brain Res. 2013, 237, 107–123. [Google Scholar] [CrossRef]
- Pallanti, S.; Salerno, L. The Diagnosis of Adult ADHD toward a Precision Psychiatry Approach. In The Burden of Adult ADHD in Comorbid Psychiatric and Neurological Disorders; Springer: Cham, Switzerland, 2020; pp. 61–86. [Google Scholar]
Measures | ADHD Patients | Healthy Controls | Statistical Analyses | Effect Size |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Parametric | Cohen’s d | |
Age (years) | 23.84 ± 2.28 | 23.88 ± 2.58 | t(83) = 0.08, p = 0.93 | 0.02 |
Education level (years) | 13.09 ± 1.15 | 12.83 ± 2.38 | t(83) = 0.64, p = 0.52 | 0.14 |
WURS 25-items (no.) | 30.51 ± 13.83 | 17.90 ± 10.10 | t(83) = 4.79, p < 0.01 | 1.04 |
ASRS (no.) | 31.95 ± 11.13 | 21.36 ± 6.47 | t(83) = 5.35, p < 0.01 | 1.16 |
Frequencies | Frequencies | Non-parametric | OR | |
Gender (male/female) | 17/26 | 11/31 | χ2(1) = 1.71, p = 0.19 | 1.84 |
Dominance (right/left) | 39/4 | 35/6 | χ2(1) = 0.57, p = 0.45 | 1.67 |
Glasses (yes/no) | 8/35 | 5/37 | χ2(1) = 0.74, p = 0.39 | 1.69 |
Measures | ADHD (Mean ± SD) | Controls (Mean ± SD) | Statistical Analyses | Effect Size | |
---|---|---|---|---|---|
All stages | Eyes movements scale (%) | 19.28 ± 11.03 | 11.06 ± 6.89 | t(83) = 4.11, p < 0.01 | d = 0.89 |
Attention (%) | 95.52 ± 5.71 | 97.33 ± 4.16 | F(1, 83) = 2.78, p = 0.10 | ηp2 = 0.03 | |
Timelines (%) | 73.56 ± 14.57 | 80.48 ± 10.62 | F(1, 83) = 6.23, p = 0.01 | ηp2 = 0.08 | |
Hyperactivity (%) | 3.76 ± 4.16 | 2.14 ± 4.05 | F(1,83) = 4.96, p = 0.29 | ηp2 = 0.06 | |
Impulsivity (%) | 5.28 ± 3.38 | 3.14 ± 2.2 | F(1,83) = 12.5, p < 0.01 | ηp2 = 0.13 | |
Visual distractors stage | Eyes movements scale (%) | 26.94 ± 13.63 | 14.11 ± 9.06 | t(83) = 5.10, p < 0.01 | d = 1.11 |
Attention (%) | 94.94 ± 8.26 | 96.43 ± 5.40 | F(1, 83) = 0.96, p = 0.33 | ηp2 = 0.01 | |
Timelines (%) | 67.85 ± 16.11 | 74.61 ± 12.11 | F(1, 83) = 4.77, p = 0.03 | ηp2 = 0.05 | |
Hyperactivity (%) | 4.41 ± 5.35 | 2.63 ± 3.64 | F(1, 83) = 3.22, p = 0.08 | ηp2 = 0.04 | |
Impulsivity (%) | 4.82 ± 3.49 | 3.61 ± 3.33 | F(1, 83) = 2.7, p = 0.10 | ηp2 = 0.03 |
Model Statistics | Coefficients Statistics | ||||||
---|---|---|---|---|---|---|---|
Model χ2(df), p | 2nd Stage (Δ) χ2(df), p | β | ES | OR | OR CI | Wald | |
Logistic Regression I: All MOXO-dCPT Stages | |||||||
Stage 1 | 18.73(4), p < 0.01 | ____ | |||||
1. Attention | 0.075 | 0.08 | 1.08 | 0.93–1.23 | 0.93, p = 0.34 | ||
2. Timeliness | −0.068 | 0.03 | 0.93 | 0.88–0.99 | 5.49, p = 0.02 | ||
3. Hyperactivity | −0.028 | 0.07 | 0.97 | 0.84–1.12 | 0.15, p = 0.70 | ||
4. Impulsivity | −0.338 | 0.12 | 1.40 | 1.12–1.76 | 8.47, p = 0.03 | ||
+ Constant | −3.252 | 6.33 | 0.04 | ____ | 0.26, p = 0.61 | ||
Stage 2 | 24.50(5), p < 0.01 | 5.77(1), p = 0.02 | |||||
1. Attention | 0.060 | 0.08 | 1.06 | 0.91–1.25 | 0.56, p = 0.45 | ||
2. Timeliness | −0.046 | 0.03 | 0.96 | 0.90–1.01 | 2.27, p = 0.13 | ||
3. Hyperactivity | −0.072 | 0.08 | 0.93 | 0.80–1.09 | 0.80, p = 0.37 | ||
4. Impulsivity | 0.295 | 0.12 | 1.34 | 1.07–1.69 | 6.42, p = 0.01 | ||
5. Eye movements scale | 0.075 | 0.03 | 1.08 | 1.01–1.15 | 4.82, p = 0.03 | ||
+ Constant | −4.359 | 6.61 | 0.01 | ____ | 0.43, p = 0.51 | ||
Logistic Regression II: Visual Distractors Stage | |||||||
Stage 1 | 8.96(4), p = 0.06 | ___ | |||||
1. Attention | 0.040 | 0.04 | 1.04 | 0.95–1.14 | 0.82, p = 0.34 | ||
2. Timeliness | −0.043 | 0.02 | 0.96 | 0.92–1.00 | 4.00, p = 0.05 | ||
3. Hyperactivity | −0.061 | 0.06 | 1.06 | 0.95–1.19 | 1.06, p = 0.30 | ||
4. Impulsivity | −0.085 | 0.08 | 1.09 | 0.94–1.26 | 1.24, p = 0.27 | ||
+ Constant | −1.325 | 3.57 | 0.27 | ____ | 0.13, p = 0.71 | ||
Stage 2 | 23.98(5), p < 0.01 | 15.02(1), p < 001 | |||||
1. Attention | 0.051 | 0.05 | 1.05 | 0.96–1.16 | 1.08, p = 0.30 | ||
2. Timeliness | −0.011 | 0.02 | 0.99 | 0.94–1.04 | 0.20, p = 0.66 | ||
3. Hyperactivity | −0.014 | 0.06 | 0.99 | 0.87–1.12 | 0.05, p = 0.83 | ||
4. Impulsivity | 0.049 | 0.08 | 1.05 | 0.89–1.24 | 0.35, p = 0.55 | ||
5. Eye movements scale | 0.098 | 0.03 | 1.10 | 1.04–1.17 | 11.82, p < 0.01 | ||
+ Constant | −6.252 | 4.31 | 0.00 | ____ | 2.10, p = 0.15 |
(a) Repeated-Measures ANOVA | ||||||
Factors | df (83) | F | p | ηp² | Pairwise Comparisons (Bonferroni) | |
Group | 1 | 16.67 | p < 0.01 | 0.17 | Controls < ADHD | |
Distractors stage | 3 | 107.55 | p < 0.01 | 0.56 | Non < visual; Non = auditory; Non < combined; Auditory < visual; Auditory < combined; Visual < combined | |
Group x Distractors stages | 3 | 13.14 | p < 0.01 | 0.14 | Comparisons are detailed below | |
(b) Pairwise Comparisons (Bonferroni) for the Group X Distractors Stage Interaction | ||||||
Distractors stage | ADHD (n = 43) | Controls (n = 42) | p | Cohen’s d | ||
Mean | SD | Mean | SD | |||
Non | 8.81 | 6.82 | 6.63 | 5.8 | p = 0.12 | 0.34 |
Visual | 26.94 | 13.63 | 14.11 | 9.06 | p < 0.01 | 1.11 |
Auditory | 11.00 | 12.38 | 6.56 | 9.72 | p = 0.07 | 0.40 |
Combined | 30.68 | 16.11 | 17.26 | 12.24 | p < 0.01 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbaum, T.; Braw, Y.; Lev, A.; Rassovsky, Y. Attention-Deficit/Hyperactivity Disorder (ADHD): Integrating the MOXO-dCPT with an Eye Tracker Enhances Diagnostic Precision. Sensors 2020, 20, 6386. https://doi.org/10.3390/s20216386
Elbaum T, Braw Y, Lev A, Rassovsky Y. Attention-Deficit/Hyperactivity Disorder (ADHD): Integrating the MOXO-dCPT with an Eye Tracker Enhances Diagnostic Precision. Sensors. 2020; 20(21):6386. https://doi.org/10.3390/s20216386
Chicago/Turabian StyleElbaum, Tomer, Yoram Braw, Astar Lev, and Yuri Rassovsky. 2020. "Attention-Deficit/Hyperactivity Disorder (ADHD): Integrating the MOXO-dCPT with an Eye Tracker Enhances Diagnostic Precision" Sensors 20, no. 21: 6386. https://doi.org/10.3390/s20216386
APA StyleElbaum, T., Braw, Y., Lev, A., & Rassovsky, Y. (2020). Attention-Deficit/Hyperactivity Disorder (ADHD): Integrating the MOXO-dCPT with an Eye Tracker Enhances Diagnostic Precision. Sensors, 20(21), 6386. https://doi.org/10.3390/s20216386