The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics
Abstract
:1. Introduction
- -
- Some implicit limitations of several traditional methods listed within the international ergonomics standards developed in an attempt to prevent and reduce the risk of WMDs, able to identify manual handling activities associated with a high risk of WMDs and to evaluate the effectiveness of ergonomic interventions [1,2];
- -
- The new opportunities represented by innovative wearable devices for workers monitoring and feedback;
- -
- The new “Industry 4.0” scenario which is making these methods increasingly difficult to apply. Indeed, the presence of new human augmentation technologies in many manual handling activities is not currently included in the standards with the consequent difficulty of associating a biomechanical risk with these tasks;
- -
- The criticisms, underlined by the literature, related to scientific basis these international standards were created on.
- -
- Overview of existing standards in the field of biomechanical risk assessment, to identify gaps in the standardization repository;
- -
- Recommendations for modifying existing standards in the field of biomechanical risk assessment, by analyzing strengths and weaknesses of various methods listed within the standards, and by considering the new HRC scenario;
- -
- Identification of standardization potential and needs, aimed at developing new standards or to create a roadmap of new standardization activities.
- -
- Underlining the huge problem linked to the onset of WMDs reporting a synthesis of their current incidence and prevalence in several world countries (Section 2);
- -
- Assessing strengths and weaknesses of methods and international standards for manual handling activities, especially in view of the new technological opportunities (wearable sensors for monitoring and HRC systems) offered by industry 4.0 (Section 3);
- -
- Discussing contents and next challenges needed for the revision of the international standards (Section 4).
2. WMDs: Definitions, Prevalence and Incidence
3. International Standards for Manual Handling Activities: Strengths and Weaknesses
- -
- Their observational nature has limited the scalability and generality of the standards;
- -
- They produce results that usually include some subjectivity;
- -
- They are usually pen-and-paper based, hence time consuming and inefficient;
- -
- They are influenced by the restrictions of the equations and parameters;
- -
- They may not have sufficient accuracy, precision and resolution;
- -
- They may not be repeatable and reliable, which is indispensable for industrial use.
- -
- Need for procedures for producing ISO ergonomics standards other than writing evidence-based practical guidelines (e.g., no presentation of the methods used for selecting the recommended force limits and risk assessment tools, no adoption of transparent scientific review processes);
- -
- Absence of information about criteria for identification of subcommittees: the identities of subcommittee members are undisclosed and their scientific profiles are not described;
- -
- Undefined involvement of the key stakeholders: labour authorities, companies, ergonomics professionals and knowledgeable scientists are crucial for ISO actions and for improving the knowledge and expertise. They are needed to apply the risk assessment methods appropriately and professionally at workplace. Properly chosen stakeholders should also provide external peer-review;
- -
- Unclear choices of the preferred methods of risk assessment over others: this issue is crucial also to avoid potential conflict of interests;
- -
- Statements based on personal opinions and in contrast with the literature.
4. Discussion
- -
- For each kind of work task (lifting, handling low loads at high frequency, overhead work, etc.) a systematic search and appraisal of the available findings published in international peer-reviewed journals should be performed on the sensor-based biomechanical risk assessment topic;
- -
- The ISO Standards should consider only the approaches evaluated in large prospective and cross-sectional studies;
- -
- The ISO Standards should provide any information on the reduction of the risk of WMDs expected for any given level of exposure;
- -
- The ISO Standards should consider an external peer-review by key stakeholders, relevant professional societies and interested scientists.
- -
- The use of instrumental-based tools for rating the RNLE parameters;
- -
- The design of new RNLE multipliers, capable of rating the risk during lifting tasks performed by HRC technologies, such as cobots and wearbots. For instance, in recent years, new wearable assistive devices such as exoskeletons have been introduced in the workplace and their use is expected to become more commonplace. In particular, exoskeletons appear to be a new option in addressing WMDs [136]. An advantage of both wearbots and cobots is that both are generally sensorized, a feature which facilitates risk evaluation. The wearability of sensing and feedback devices (fellow–feeling wearables) in addition to fellow–assistant wearbots and cobots allows for increasing workers’ awareness about possible risks and enhance the effectiveness and safety during the interaction with cobots and robots.
- -
- The design of new instrumental-based approaches are capable of directly quantifying the biomechanical risk, when the RNLE cannot be applied. For instance, the execution of hybrid team lifting tasks implies complex coordination mechanisms that need to be studied [125].
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palmer, K.T.; Harris, E.C.; Linaker, C.; Barker, M.; Lawrence, W.; Cooper, C.; Coggon, D.; Harris, C. Effectiveness of community- and workplace-based interventions to manage musculoskeletal-related sickness absence and job loss: A systematic review. Rheumatology 2011, 51, 230–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, T.R.; Putz-Anderson, V.; Garg, A. Applications Manual for the Revised NIOSH Lifting Equation; U.S. Department of Health and Human Services: Cincinnati, OH, USA, 1994.
- Multi-Annual Roadmap. Available online: https://ec.europa.eu/digital-single-market/en/news/multi-annual-roadmap-call-ict-24-robotics-now-available (accessed on 15 September 2020).
- Roadmap. Available online: https://www.eu-robotics.net/sparc/about/roadmap/index.html (accessed on 15 September 2020).
- Vanderborght, B. Unlocking the Potential of Industrial Human–Robot Collaboration. A Vision on Industrial Collaborative Robots for Economy and Society; Publications Office of the EU: Luxembourg, 2019; Available online: https://op.europa.eu/en/publication-detail/-/publication/407d1cee-5225-11ea-aece-01aa75ed71a1/language-en (accessed on 15 September 2020).
- Sophia Project. Available online: www.project-sophia.eu (accessed on 15 September 2020).
- Lotti, N.; Xiloyannis, M.; Durandau, G.; Galofaro, E.; Sanguineti, V.; Masia, L.; Sartori, M. Adaptive Model-Based Myoelectric Control for a Soft Wearable Arm Exosuit: A New Generation of Wearable Robot Control. IEEE Robot. Autom. Mag. 2020, 27, 43–53. [Google Scholar] [CrossRef]
- Durandau, G.; Farina, D.; Asin-Prieto, G.; Dimbwadyo-Terrer, I.; Lara, S.L.; Pons, J.L.; Moreno, J.C.; Sartori, M. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. J. Neuroeng. Rehabilitation 2019, 16, 91. [Google Scholar] [CrossRef]
- Ajoudani, A.; Albrecht, P.; Bianchi, M.; Cherubini, A.; Del Ferraro, S.; Fraisse, P.; Fritzsche, L.; Garabini, M.; Ranavolo, A.; Rosen, P.H.; et al. Smart collaborative systems for enabling flexible and ergonomic work practices [industry activities]. IEEE Robot. Autom. Mag. 2020, 27, 169–176. [Google Scholar] [CrossRef]
- Van Der Beek, A.J.; Dennerlein, J.T.; A Huysmans, M.; Mathiassen, S.E.; Burdorf, A.; Van Mechelen, W.; van Dieën, J.H.; Frings-Dresen, M.H.; Holtermann, A.; Janwantanakul, P.; et al. A research framework for the development and implementation of interventions preventing work-related musculoskeletal disorders. Scand. J. Work. Environ. Heal. 2017, 43, 526–539. [Google Scholar] [CrossRef]
- Eurofound. European Working Conditions Survey 2015; Eurofound: Brussels, Belgium, 2019; Available online: https://www.eurofound.europa.eu/data/european-working-conditions-survey (accessed on 15 September 2020).
- Da Xu, L.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Bernard, B.P. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute of Occupational Safety and Health. Musculoskeletal Disorders and Workplace Factors: A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Lower Back; DHHS (NIOSH) Publication: Washington, DC, USA, 1997. Available online: https://www.cdc.gov/niosh/docs/97-141 (accessed on 15 September 2020).
- Bao, S.; Howard, N.; Lin, J.-H. Are work-related musculoskeletal disorders claims related to risk factors in workplaces of the manufacturing industry? Ann. Work. Expo. Heal. 2019, 64, 152–164. [Google Scholar] [CrossRef]
- Koblauch, H. Low back load in airport baggage handlers. Dan. Med. J. 2016, 63, B5233. [Google Scholar]
- Bassani, T.; Stucovitz, E.; Qian, Z.; Briguglio, M.; Galbusera, F. Validation of the anybody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 2017, 58, 89–96. [Google Scholar] [CrossRef]
- Wilke, H.-J.; Neef, P.; Hinz, B.; Seidel, H.; Claes, L. Intradiscal pressure together with anthropometric data—A data set for the validation of models. Clin. Biomech. 2001, 16, S111–S126. [Google Scholar] [CrossRef]
- Le, P.; Aurand, A.; Dufour, J.S.; Knapik, G.G.; Best, T.M.; Khan, S.N.; Mendel, E.; Marras, W.S. Development and testing of a moment-based coactivation index to assess complex dynamic tasks for the lumbar spine. Clin. Biomech. 2017, 46, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Le, P.; Best, T.M.; Khan, S.N.; Mendel, E.; Marras, W.S. A review of methods to assess coactivation in the spine. J. Electromyogr. Kinesiol. 2017, 32, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Ranavolo, A.; Mari, S.; Conte, C.; Serrao, M.; Silvetti, A.; Iavicoli, S.; Draicchio, F. A new muscle co-activation index for biomechanical load evaluation in work activities. Ergonomics 2015, 58, 966–979. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Lavender, S.A.; Ferguson, S.A.; Splittstoesser, R.E.; Yang, G. Quantitative dynamic measures of physical exposure predict low back functional impairment. Spine 2010, 35, 914–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marras, W.S.; Lavender, S.A.; Ferguson, S.A.; Splittstoesser, R.E.; Yang, G. Quantitative biomechanical workplace exposure measures: Distribution centers. J. Electromyogr. Kinesiol. 2010, 20, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.P.; Marras, W.S. Cost–benefit of muscle cocontraction in protecting against spinal instability. Spine 2000, 25, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Argubi-Wollesen, A.; Wollesen, B.; Leitner, M.; Mattes, K. Human body mechanics of pushing and pulling: Analyzing the factors of task-related strain on the musculoskeletal system. Saf. Health Work. 2017, 8, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Ranavolo, A.; Chini, G.; Silvetti, A.; Mari, S.; Serrao, M.; Draicchio, F. Myoelectric manifestation of muscle fatigue in repetitive work detected by means of miniaturized sEMG sensors. Int. J. Occup. Saf. Ergon. 2017, 24, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-A.; Nakata, M. Work-related musculoskeletal disorders in Korea and Japan: A comparative description. Ann. Occup. Environ. Med. 2014, 26, 17. [Google Scholar] [CrossRef] [Green Version]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojic, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Knapik, G.G.; Ferguson, S. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing. Clin. Biomech. 2009, 24, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Colombini, D.; Occhipinti, E. Preventing upper limb work-related musculoskeletal disorders (UL-WMSDS): New approaches in job (re)design and current trends in standardization. Appl. Ergon. 2006, 37, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Hoozemans, M.J.M.; Van Der Beek, A.J.; Frings-Dresen, M.H.H.; Van Der Woude, L.H.; Van Dijk, F.J. Low-back and shoulder complaints among workers with pushing and pulling tasks. Scand. J. Work. Environ. Health 2002, 28, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Hoozemans, M.J.M.; Van Der Beek, A.J.; Frings-Dresen, M.H.W.; Van Der Woude, L.H.V.; Van Dijk, F.J.H. Pushing and pulling in association with low back and shoulder complaints. Occup. Environ. Med. 2002, 59, 696–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira-Silva, I.; Azevedo, J.; Rodrigues, S.; Seixas, A.; Jorge, M. Predicting musculoskeletal symptoms in workers of a manufacturing company. Int. J. Occup. Saf. Ergon. 2020, 19, 1–9. [Google Scholar] [CrossRef]
- Van Hoof, W.; O’Sullivan, K.; O’Keeffe, M.; Verschueren, S.; O’Sullivan, P.; Dankaerts, W. The efficacy of interventions for low back pain in nurses: A systematic review. Int. J. Nurs. Stud. 2018, 77, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kim, K.S.; Kim, D.S.; Jang, S.J.; Hong, K.H.; Yoo, S.-W. Characteristics of work-related musculoskeletal disorders in korea and their work-relatedness evaluation. J. Korean Med. Sci. 2010, 25, S77–S86. [Google Scholar] [CrossRef] [Green Version]
- Huisstede, B.M.A.; Bierma-Zeinstra, S.; Koes, B.W.; Verhaar, J.A.N. Incidence and prevalence of upper-extremity musculoskeletal disorders. A systematic appraisal of the literature. BMC Musculoskelet. Disord. 2006, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- BLS. Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work; Bureau of Labor Statistics: Washington, DC, USA, 2015. [Google Scholar]
- Pector, J.T.; Lieblich, M.; Bao, S.; McQuade, K.; Hughes, M. Automation of workplace lifting hazard assessment for musculoskeletal injury prevention. Ann. Occup. Environ. Med. 2014, 26, 15. [Google Scholar] [CrossRef] [Green Version]
- Hussey, L.; Thorley, K.; Turner, S.; McNamee, R.; Agius, R. Work-related sickness absence as reported by UK general practitioners. Occup. Med. 2012, 62, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Linaker, C.; Harris, E.C.; Cooper, C.; Coggon, D.; Palmer, K.T. The burden of sickness absence from musculoskeletal causes in Great Britain. Occup. Med. 2011, 61, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HSE (Health and Safety Executive). Self-Reported Work-Related Illness (SWI) and Workplace Injuries: Results from the Labour Force Survey (LFS)—Index of Tables. Available online: http://www.hse.gov.uk/statistics/lfs/index.htm (accessed on 15 September 2020).
- Da Costa, B.R.; Vieira, E.R. Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. Am. J. Ind. Med. 2009, 53, 285–323. [Google Scholar] [CrossRef] [PubMed]
- INAIL, Italian Worker’s Compensation Authority. Annual Report. Part IV. Statistics, Accidents and Occupational Diseases. Available online: https://www.inail.it/cs/internet/docs/alg-appendice-statistica-relazione-annuale-anno-2018.pdf (accessed on 15 September 2020).
- ISO/DIS 11228-1. Ergonomics—Manual Handling—Part 1: Lifting and Carrying; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- ISO 11228-2. Ergonomics—Manual Handling—Part 2: Pushing and Pulling; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- ISO/DIS 11228-3. Ergonomics—Manual Handling—Part 3: Handling of Low Loads at High Frequency; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- ISO/TR 12295. Ergonomics—Application Document for ISO Standards on Manual Handling (ISO 11228-1, ISO 11228-2 and ISO 11228-3) and Static Working Postures (ISO 11226); ISO: Geneva, Switzerland, 2004. [Google Scholar]
- ISO 11226. Ergonomics—Evaluation of Static Working Postures; ISO: Geneva, Switzerland, 2000. [Google Scholar]
- ISO/TR 12296. Ergonomics—Manual Handling of People in the Healthcare Sector; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Klussmann, A.; Liebers, F.; Gebhardt, H.; Rieger, M.A.; Latza, U.; Steinberg, U. Risk assessment of manual handling operations at work with the key indicator method (KIM-MHO)—Determination of criterion validity regarding the prevalence of musculoskeletal symptoms and clinical conditions within a cross-sectional study. BMC Musculoskelet. Disord. 2017, 18, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klussmann, A.; Steinberg, U.; Liebers, F.; Gebhardt, H.; Rieger, M.A. The Key Indicator Method for Manual Handling Operations (KIM-MHO)—Evaluation of a new method for the assessment of working conditions within a cross-sectional study. BMC Musculoskelet. Disord. 2010, 11, 272. [Google Scholar] [CrossRef] [Green Version]
- The Health and Safety Executive. Manual Handling Assessment Chart (the MAC Tool). Available online: http://www.hse.gov.uk/msd/mac/ (accessed on 15 September 2020).
- Stobbe, T.J.; Plummer, R.W.; Jensen, R.C.; Attfield, M.D. Incidence of low back injuries among nursing personnel as a function of patient lifting frequency. J. Saf. Res. 1988, 19, 21–28. [Google Scholar] [CrossRef]
- Feldstein, A.; Vollmer, W.; Valanis, B. Evaluating the patient-handling tasks of nurses. J. Occup. Med. Off. Publ. Ind. Med. Assoc. 1990, 32, 1009–1013. [Google Scholar]
- Kjellberg, K.; Johnsson, C.; Proper, K.; Olsson, E.; Hagberg, M. An observation instrument for assessment of work technique in patient transfer tasks. Appl. Ergon. 2000, 31, 139–150. [Google Scholar] [CrossRef]
- Johnsson, C.; Kjellberg, K.; Kjellberg, A.; Lagerström, M. A direct observation instrument for assessment of nurses’ patient transfer technique (DINO). Appl. Ergon. 2004, 35, 591–601. [Google Scholar] [CrossRef]
- Radovanovic, C.A.T.; Alexandre, N.M.C. Validation of an instrument for patient handling assessment. Appl. Ergon. 2004, 35, 321–328. [Google Scholar] [CrossRef]
- Karhula, K.; Rönnholm, T.; Sjögren, T. A Method for Evaluating the Load of Patient Transfers; Occupational Safety and Health Administration: Washington, DC, USA, 2009; Available online: http://tyosuojelujulkaisut.wshop.fi/documents/2009/04/TSJ_83.pdf (accessed on 15 September 2020).
- Menoni, O.; Ricci, M.G.; Panciera, D.; Occhipinti, E. [The assessment of exposure to and the activity of the manual lifting of patients in wards: Methods, procedures, the exposure index (MAPO) and classification criteria. Movimientazione e Assistenza Pazienti Ospedalizzati (Lifting and Assistance to Hospitalized Patients)]. La Med. Lav. 1999, 90, 152–172. [Google Scholar]
- Battevi, N.; Menoni, O.; Ricci, M.G.; Cairoli, S. MAPO index for risk assessment of patient manual handling in hospital wards: A validation study. Ergonomics 2006, 49, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Knibbe, J.; Friele, R. The use of logs to assess exposure to manual handling of patients, illustrated in an intervention study in home care nursing. Int. J. Ind. Ergon. 1999, 24, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Royal College of Nursing (RCN). Manual handling Assessments in Hospitals and the Community; An RCN Guide; RCN: London, UK, 2007. [Google Scholar]
- Snook, S.H.; Ciriello, V.M. The design of manual handling tasks: Revised tables of maximum acceptable weights and forces. Ergonomics 1991, 34, 1197–1213. [Google Scholar] [CrossRef] [PubMed]
- Mital, A.; Nicholson, A.S.; Ayoub, M.M. A Guide to Manual Materials Handling; Taylor & Francis: London, UK, 1997. [Google Scholar]
- Health and Safety Executive (HSE) Risk Assessment of Pushing and Pulling (RAPP) Tool; London, UK, 2016; ISBN 9780717666577. Available online: http://www.hse.gov.uk/pubns/indg478.htm (accessed on 16 March 2018).
- Jurgens, W.W.; Mohr, D.; Pangert, R.; Pernack, E.F.; Schultz, K.; Steinberg, U. (LASI) Publication LV 29 Handlungsanleitung zur Beurteilung der Arbeitsbedingungen beim Ziehen und Schieben von Lasten [Guide for Risk Assessment at Pushing and Pulling of Loads]; Länderausschuss für Arbeitsschutz und Sicherheitstechnik: Hamburg, Germany, 2002; ISBN 3-936415-25-0. Available online: http://lasi-info.com/uploads/media/lv29_01.pdf (accessed on 16 March 2018).
- Lind, C.M. Pushing and pulling: An assessment tool for occupational health and safety practitioners. Int. J. Occup. Saf. Ergon. 2016, 24, 14–26. [Google Scholar] [CrossRef] [PubMed]
- ACGIH Worldwide. Hand Activity Level TLV. In American Conference of Governmental Industrial Hygienists (ACGIH). Hand Activity Level (HAL). Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2002; pp. 112–114. [Google Scholar]
- American Conference of Governmental Industrial Hygienists (ACGIH). 2015 TLVs & BEIs, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2015; ISBN 978-1-607260-77-6. [Google Scholar]
- Akkas, O.; Azari, D.P.; Chen, C.-H.E.; Hu, Y.H.; Ulin, S.S.; Armstrong, T.J.; Rempel, D.; Radwin, R.G. A hand speed-duty cycle equation for estimating the ACGIH hand activity level rating. Ergonomics 2014, 58, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwin, R.G.; Azari, D.P.; Lindstrom, M.J.; Ulin, S.S.; Armstrong, T.J.; Rempel, D. A frequency-duty cycle equation for the ACGIH hand activity level. Ergonomics 2014, 58, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.S.; Garg, A. The Strain Index: A proposed method to analyze jobs for risk of distal upper extremity disorders. Am. Ind. Hyg. Assoc. J. 1995, 56, 443–458. [Google Scholar] [CrossRef]
- Garg, A.; Moore, J.S.; Kapellusch, J.M. The revised strain index: An improved upper extremity exposure assessment model. Ergonomics 2016, 14, 1–11. [Google Scholar] [CrossRef]
- Colombini, D. An observational method for classifying exposure to repetitive movements of the upper limbs. Ergonomics 1998, 41, 1261–1289. [Google Scholar] [CrossRef]
- Occhipinti, E. OCRA: A concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics 1998, 41, 1290–1311. [Google Scholar] [CrossRef]
- Colombini, D.; Occhipinti, E.; Grieco, A. Risk Assessment and Management of Ripetitive Movements and Extertions of Upper Limbs; Job Analysis, Ocra Risk Index, Prevention Strategies and Design Principles; Elsevier Science: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Occhipinti, E.; Colombini, D. The Occupational Repetitive Action (OCRA) methods: OCRA index and OCRA checklist. In Handbook of Human Factors and Ergonomics Methods; Stanton, N.A., Hedge, A., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Proto, A.R.; Zimbalatti, G. Risk assessment of repetitive movements in olive growing: Analysis of annual exposure level assessment models with the ocra checklist. J. Agric. Saf. Heal. 2015, 21, 241–253. [Google Scholar]
- Battaglia, A.; Lanza, E.; Battaglia, A.; Collino, F.; Capodaglio, E.M.; Imbriani, M. [Criteria of the OCRA method in evaluating the structural assembly of aircrafts: Preliminary data]. G. Ital. Med. Lav. Ergon. 2015, 37, 32–38. [Google Scholar] [PubMed]
- Ruddy, F.; Eduardo, M.; Edoardo, S. Application of the OCRA Method in the sugar cane harvest and its repercussion on the workers’ health. Preliminary study. Work 2012, 41, 3981–3983. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Woods, V.; Buckle, P.; Stubbs, D. Further development of the Quick exposure Check (QEC). Ergonomics in the Digital Age. In Proceedings of the XVth Triennial Congress of the International Ergonomics Association, Seoul, Korea, 24–29 August 2003. [Google Scholar]
- David, G.; Woods, V.; Li, G.; Buckle, P. The development of the Quick Exposure Check (QEC) for assessing exposure to risk factors for work-related musculoskeletal disorders. Appl. Ergon. 2008, 39, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Buckle, P. Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods. Ergonomics 1999, 42, 674–695. [Google Scholar] [CrossRef]
- Li, G.; Buckle, P. Evaluating Change in Exposure to Risk for Musculoskeletal Disorders a Practical Tool. In HSE Books; Suffolk: Boston, MA, USA, 1999; Volume 74, p. CRR251. Available online: http://www.hse.gov.uk/research/crr_pdf/1999/crr99251.pdf (accessed on 27 October 2005).
- Aptel, M.; Lafaurie, S.; Tronchet, L.; Atain-Kouadio, J.J. OREGE: Un Outil Simple D’évaluation des Facteurs de Risque Biomécaniques de TMS-MS du Membre Supérieur, Notes Scientifiques et Techniques; INRS: Vandoeuvre, France, 2000; Volume 196, p. 122. [Google Scholar]
- Karhu, O.; Kansi, P.; Kuorinka, I. Correcting working postures in industry: A practical method for analysis. Appl. Ergon. 1977, 8, 199–201. [Google Scholar] [CrossRef]
- Buchholz, B.; Paquet, V.; Punnett, L.; Lee, D.; Moir, S. PATH: A work sampling-based approach to ergonomic job analysis for construction and other non-repetitive work. Appl. Ergon. 1996, 27, 177–187. [Google Scholar] [CrossRef]
- McAtamney, L.; Corlett, E.N. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef]
- Labbafinejad, Y.; Danesh, H.; Imanizade, Z. Assessment of upper limb musculoskeletal pain and posture in workers of packaging units of pharmaceutical industries. Work 2017, 56, 337–344. [Google Scholar] [CrossRef]
- Hignett, S.; McAtamney, L. Rapid entire body assessment (REBA). Appl. Ergon. 2000, 31, 201–205. [Google Scholar] [CrossRef]
- Jones, A.; Hignett, S. Safe access/egress systems for emergency ambulances. Emerg. Med. J. 2007, 24, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Schaub, K.; Caragnano, G.; Britzke, B.; Bruder, R. The European assembly worksheet. Theor. Issues Ergon. Sci. 2013, 14, 616–639. [Google Scholar] [CrossRef]
- The Health and Safety Executive. Assessment of Repetitive Tasks (ART) Tool. Available online: https://www.hse.gov.uk/msd/uld/art/index.htm (accessed on 15 September 2020).
- Roman-Liu, D.; Bugajska, J.; Tokarski, T. Comparative study of upper limb load assessment and occurrence of musculoskeletal disorders at repetitive task workstations. Ind. Health 2014, 52, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batish, A.; Singh, T.P. MHAC—An assessment tool for analysing manual material handling tasks. Int. J. Occup. Saf. Ergon. 2008, 14, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, P.; Martins, J.; Torres, M. Musculoskeletal disorder risk assessment in home care nurses. Work 2015, 51, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.-K.; Lee, S.-Y.; Lee, K.-S.; Kim, D.-M. Comparisons of ergonomic evaluation tools (ALLA, RULA, REBA and OWAS) for farm work. Int. J. Occup. Saf. Ergon. 2017, 24, 218–223. [Google Scholar] [CrossRef]
- Alberto, R.; Draicchio, F.; Varrecchia, T.; Silvetti, A.; Iavicoli, S. Wearable monitoring devices for biomechanical risk assessment at work: Current status and future challenges—A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 2001, Erratum in 2018, 15, 2569. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.J.; Burdorf, A.; Descatha, A.; Farioli, A.; Graf, M.; Horie, S.; Marras, W.S.; Potvin, J.R.; Rempel, D.; Spatari, G.; et al. Scientific basis of ISO standards on biomechanical risk factors. Scand. J. Work. Environ. Health 2018, 44, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Colombini, D.; Occhipinti, E. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors. Scand. J. Work. Environ. Health 2018, 44, 436–438. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.J.; Burdorf, A.; Descatha, A.; Farioli, A.; Graf, M.; Horie, S.; Marras, W.S.; Potvin, J.R.; Rempel, D.; Spatari, G.; et al. Authors’ response: Letter to the editor concerning OCRA as preferred method in ISO standards on biomechanical risk factors. Scand. J. Work. Environ. Health 2018, 44, 439–440. [Google Scholar] [CrossRef]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Musculoskeletal disorders in construction: A review and a novel system for activity tracking with body area network. Appl. Ergon. 2016, 54, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lorenzini, M.; Kapıcıoğlu, K.; Ajoudani, A. ErgoTac: A Tactile Feedback Interface for Improving Human Ergonomics in Workplaces. IEEE Robot. Autom. Lett. 2018, 3, 4179–4186. [Google Scholar] [CrossRef]
- Fernandez, J.; Zhang, J.; Heidlauf, T.; Sartori, M.; Besier, T.F.; Röhrle, O.; Lloyd, D.G. Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling. Interface Focus 2016, 6, 20150084. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.; Llyod, D.G.; Farina, D. Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans. Biomed. Eng. 2016, 63, 879–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manualhandling tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef]
- Weston, E.B.; Alizadeh, M.; Knapik, G.G.; Wang, X.; Marras, W.S. Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Appl. Ergon. 2018, 68, 101–108. [Google Scholar] [CrossRef]
- Bosch, T.; Van Eck, J.; Knitel, K.; De Looze, M. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 2016, 54, 212–217. [Google Scholar] [CrossRef]
- De Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.S.; O’Sullivan, L. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 2015, 59, 671–681. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Hoshi, T.; Ikeda, H.; Okabe, K. Global harmonization of safety regulations for the use of industrial robots-permission of collaborative operation and a related study by JNIOSH. Ind. Health 2015, 53, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Sylla, N.; Bonnet, V.; Colledani, F.; Fraisse, P. Ergonomic contribution of ABLE exoskeleton in automotive industry. Int. J. Ind. Ergon. 2014, 44, 475–481. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 8373. In Robots and Robotic Devices—Vocabulary; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Vieweg, H.G. An introduction to mechanical engineering: Study on the competitiveness of the EU mechanical engineering industry within the framework contract of sectoral competitiveness studies [electronic resource]. Eur. Consort. Sustain. Ind. Policy (ECSIP) 2012, 1–361. [Google Scholar]
- Kim, W.; Lee, J.; Peternel, L.; Tsagarakis, N.G.; Ajoudani, A. Anticipatory robot assistance for the prevention of human static joint overloading in human-robot collaboration. IEEE Robot. Autom. 2017, 3, 68–75. [Google Scholar] [CrossRef]
- De Franco, A.; Lamon, E.; Balatti, P.; De Momi, E.; Ajoudani, A. An Intuitive augmented reality interface for task scheduling, monitoring, and work performance improvement in human-robot collaboration. In Proceedings of the 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Institute of Electrical and Electronics Engineers (IEEE), Budapest, Hungary, 3–5 July 2019; pp. 75–80. [Google Scholar]
- Marras, W.S. The complex spine: The multidimensional system of causal pathways for low-back disorders. Hum. Factors 2012, 54, 881–889. [Google Scholar] [CrossRef]
- Dickerson, C.R.; Meszaros, K.A.; Cudlip, A.C.; Chopp-Hurley, J.N.; Langenderfer, J.E. The influence of cycle time on shoulder fatigue responses for a fixed total overhead workload. J. Biomech. 2015, 48, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Vendramin, P.; Valenduc, G. Occupations and ageing at work - an analysis of the findings of the fifth european working conditions survey. SSRN Electron. J. 2012. Available online: https://ssrn.com/abstract=2202794 (accessed on 15 September 2020). [CrossRef]
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Boda, S.; Hegmann, K.T.; Moore, J.S.; Kapellusch, J.M.; Bhoyar, P.; Thiese, M.S.; Merryweather, A.; Deckow-Schaefer, G.; Bloswick, D.; et al. The NIOSH lifting equation and low-back pain, Part 1: Association with low-back pain in the backworks prospective cohort study. Hum. Factors 2014, 56, 6–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, T.R.; Lu, M.-L.; Piacitelli, L.A.; Werren, D.; Deddens, J.A. Efficacy of the Revised NIOSH Lifting Equation to Predict Risk of Low Back Pain Due to Manual Lifting. J. Occup. Environ. Med. 2011, 53, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.R.; Baron, S.L.; Piacitelli, L.A.; Anderson, V.P.; Skov, T.; Haring-Sweeney, M.; Wall, D.K.; Fine, L.J. Valuation of the revised NIOSH lifting equation. A cross-sectional epidemiologic study. Spine 1999, 24, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Sesek, R.; Gilkey, D.; Drinkaus, P.; Bloswick, D.S.; Herron, R. Evaluation and Quantification of Manual Materials Handling Risk Factors. Int. J. Occup. Saf. Ergon. 2003, 9, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Elprama, S.A.; Vannieuwenhuyze, J.T.A.; De Bock, S.; VanderBorght, B.; De Pauw, K.; Meeusen, R.; Jacobs, A. Social Processes: What Determines Industrial Workers’ Intention to Use Exoskeletons? Hum. Factors J. Hum. Factors Ergon. Soc. 2020, 62, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Jäger, M.; Luttmann, A. Critical survey on the biomechanical criterion in the NIOSH method for the design and evaluation of manual lifting tasks. Int. J. Ind. Ergon. 1999, 23, 331–337. [Google Scholar] [CrossRef]
- Visser, S.; Van Der Molen, H.F.; Kuijer, P.P.F.; Hoozemans, M.J.M.; Frings-Dresen, M.H. Evaluation of team lifting on work demands, workload and workers’ evaluation: An observational field study. Appl. Ergon. 2014, 45, 1597–1602. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Davis, K.G.; Kirking, B.C.; Granata, K.P. Spine loading and trunk kinematics during team lifting. Ergonomics 1999, 42, 1258–1273. [Google Scholar] [CrossRef] [PubMed]
- Barrett, R.S.; Dennis, G. Ergonomic issues in team lifting. Hum. Factors Ergon. Manuf. 2005, 15, 293–307. [Google Scholar] [CrossRef]
- Karwowski, W.; Pongpatanasuegsa, N. Testing of isometric and isokinetic lifting strengths of untrained females in teamwork. Ergonomics 1986, 29, 869–878. [Google Scholar] [CrossRef]
- Ranavolo, A.; Varrecchia, T.; Iavicoli, S.; Marchesi, A.; Rinaldi, M.; Serrao, M.; Conforto, S.; Cesarelli, M.; Draicchio, F. Surface electromyography for risk assessment in work activities designed using the “revised NIOSH lifting equation”. Int. J. Ind. Ergon. 2018, 68, 34–45. [Google Scholar]
- Ranavolo, A.; Varrecchia, T.; Rinaldi, M.; Silvetti, A.; Serrao, M.; Conforto, S.; Draicchio, F. Mechanical lifting energy consumption in work activities designed by means of the “revised NIOSH lifting equation”. Ind. Health 2017, 55, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Varrecchia, T.; De Marchis, C.; Rinaldi, M.; Draicchio, F.; Serrao, M.; Schmid, M.; Conforto, S.; Alberto, R. Lifting activity assessment using surface electromyographic features and neural networks. Int. J. Ind. Ergon. 2018, 66, 1–9. [Google Scholar] [CrossRef]
- Varrecchia, T.; De Marchis, C.; Draicchio, F.; Schmid, M.; Conforto, S.; Alberto, R. Lifting activity assessment using kinematic features and neural networks. Appl. Sci. 2020, 10, 1989. [Google Scholar] [CrossRef] [Green Version]
- Potvin, J.R. Comparing the revised NIOSH lifting equation to the psychophysical, biomechanical and physiological criteria used in its development. Int. J. Ind. Ergon. 2014, 44, 246–252. [Google Scholar] [CrossRef]
- Fox, R.R.; Lu, M.-L.; Occhipinti, E.; Jaeger, M. Understanding outcome metrics of the revised NIOSH lifting equation. Appl. Ergon. 2019, 81, 102897. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.; Occhipinti, E.; Colombini, D.; Alvarez-Casado, E.; Fox, R. Variable Lifting Index (VLI): A new method for evaluating variable lifting tasks. Hum. Factors 2016, 58, 695–711. [Google Scholar] [CrossRef] [PubMed]
- European Agency for Safety and Health at Work. The Impact of Using Exoskeletons on Occupational Safety and Health; 2019; pp. 1–10. Available online: https://osha.europa.eu/en/publications/impact-using-exoskeletons-occupational-safety-and-health/view (accessed on 15 September 2020).
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.P.; Hicks, J.L.; Hastie, T.; Leskovec, J.; Ré, C.; Delp, S.L. The mobilize center: An NIH big data to knowledge center to advance human movement research and improve mobility. J. Am. Med. Inform. Assoc. 2015, 22, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Sartori, M.; Yavuz, U.Ş.; Farina, D. In Vivo Neuromechanics: Decoding causal motor neuron behavior with resulting musculoskeletal function. Sci. Rep. 2017, 7, 13465. [Google Scholar] [CrossRef]
- Rouse, E.; Hargrove, L.J.; Perreault, E.J.; Kuiken, T.A. Estimation of human ankle impedance during the stance phase of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 870–878. [Google Scholar] [CrossRef]
- Cop, C.P.; Durandau, G.; Esteban, A.M.; van ’t Veld, R.C.; Schouten, A.C.; Sartori, M. Model-based estimation of ankle joint stiffness during dynamic tasks: A validation-based approach. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 4104–4107. [Google Scholar] [CrossRef]
- Sartori, M.; Maculan, M.; Pizzolato, C.; Reggiani, M.; Farina, D. A theoretical and computational framework for modeling and simulating musculoskeletal stiffness during locomotion. In Proceedings of the 25th Congress of the International Society of Biomechanics, Glasgow, UK, 12–16 July 2015; pp. 1–2. [Google Scholar]
- Durandau, G.; Farina, D.; Sartori, M. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms. IEEE Trans. Biomed. Eng. 2017, 65, 556–564. [Google Scholar] [CrossRef] [Green Version]
Method | Work Activity | Body Part Assessment | References |
---|---|---|---|
Revised NIOSH lifting equation (RNLE) | Lifting and carrying | Shoulders, trunk, hands | [2] |
Key indicator method (KIM-MHO) | Lifting and carrying | Trunk, hands | [49,50] |
Manual handling assessment chart (the MAC tool) | Lifting and carrying | Trunk | [51] |
LBP as a function of patient lifting frequency | Patient handling | Trunk | [52] |
Back injury prevention project (BIPP) | Patient handling | Trunk | [53] |
PATE | Patient handling | Trunk | [54] |
DINO | Patient handling | Trunk | [55] |
Patient handling assessment | Patient handling | - | [56] |
Patient transfer assessing instrument (PTAI) | Patient handling | Whole body | [57] |
MAPO | Patient handling | - | [58,59] |
TilThermometer | Patient handling | - | [60] |
Manual handling assessments in hospitals and the community | Patient handling | - | [61] |
Revised tables of maximum acceptable weights and forces | Pushing and pulling | - | [62] |
Mital Tables | Pushing and pulling | - | [63] |
Risk assessment of pushing and pulling tool (RAPP) | Pushing and pulling | Trunk | [64] |
Assessment of pulling and pushing based on key indicators | Pushing and pulling | Trunk | [65] |
RAMP tool | Pushing and pulling | Trunk | [66] |
ACGIH assessment of hand activity level (HAL) | Repetitive movements | - | [67,68,69,70] |
Strain index (SI) | Repetitive movements | Hands, wrists | [71,72] |
Occupational repetitive actions (OCRA) index and checklist | Repetitive movements | Shoulders, elbows, wrists, hands | [73,74,75,76,77,78,79] |
Quick exposure check (QEC) | Repetitive movements | Upper limbs, back | [80,81,82,83] |
Outil de repérage et d’evaluation des gestes (OREGE) | Repetitive movements | Upper limbs | [84] |
OWAS | Repetitive movements | Whole body | [85] |
Posture, activity, tools and handling (PATH) | Repetitive movements | Whole body | [86] |
Rapid upper limb assessment method (RULA) | Repetitive movements | Whole bodyParticular attention to the neck, trunk, shoulders, arms, wrists | [87,88] |
Rapid entire body assessment method (REBA) | - | Trunk, legs, neck, shoulders, arms, wrists | [89,90] |
The European Assembly Worksheet (EAWS) | Repetitive tasks | Upper limbs | [91] |
Assessment of repetitive task (ART) | Repetitive tasks | Upper limbs, neck, trunk | [92] |
Upper limb risk assessment (ULRA) | Repetitive tasks | Arms, forearms, hands | [93] |
Manual Handling Assessment Chart (MAC) | Manual material handling tasks | Shoulders, Trunk | [94,95] |
Agricultural lower limb assessment (ALLA) | Agricultural tasks | Lower limb | [96] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranavolo, A.; Ajoudani, A.; Cherubini, A.; Bianchi, M.; Fritzsche, L.; Iavicoli, S.; Sartori, M.; Silvetti, A.; Vanderborght, B.; Varrecchia, T.; et al. The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. Sensors 2020, 20, 5750. https://doi.org/10.3390/s20205750
Ranavolo A, Ajoudani A, Cherubini A, Bianchi M, Fritzsche L, Iavicoli S, Sartori M, Silvetti A, Vanderborght B, Varrecchia T, et al. The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. Sensors. 2020; 20(20):5750. https://doi.org/10.3390/s20205750
Chicago/Turabian StyleRanavolo, Alberto, Arash Ajoudani, Andrea Cherubini, Matteo Bianchi, Lars Fritzsche, Sergio Iavicoli, Massimo Sartori, Alessio Silvetti, Bram Vanderborght, Tiwana Varrecchia, and et al. 2020. "The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics" Sensors 20, no. 20: 5750. https://doi.org/10.3390/s20205750
APA StyleRanavolo, A., Ajoudani, A., Cherubini, A., Bianchi, M., Fritzsche, L., Iavicoli, S., Sartori, M., Silvetti, A., Vanderborght, B., Varrecchia, T., & Draicchio, F. (2020). The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. Sensors, 20(20), 5750. https://doi.org/10.3390/s20205750