IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment
Abstract
:1. Introduction
2. Related Work
2.1. Service Migration Framework
2.2. Service Migration Algorithm
3. IoT-RECSM Smart Service Migration Framework
3.1. Resource Utilization Model for Edge Node Resource
3.2. Resource Usage Model for Edge Service
3.3. Migration Service Selection Model
3.4. Edge Node Selection Model
Algorithm 1 Network Maximum Flow. |
Require: Ensure:f |
1: conversion the edge network into a directed edge network from s to t |
2: initialize flow f to 0 |
3: while there exists a path p between s and t do |
4: if all and then |
5: augment flow along p |
6: end if |
7: end while |
8: return f |
3.5. Dynamic Edge Service Migration Algorithm
Algorithm 2 Dynamic Edge Smart Service Migration. |
Require: |
Ensure: |
1: |
2: if then |
3: while do |
4: |
5: end while |
6: |
7: while do |
8: |
9: |
10: if then |
11: |
12: end if |
13: end while |
14: while do |
15: |
16: |
17: end while |
18: |
19: if then |
20: |
21: end if |
22: |
23: |
24: end if |
4. The Prototype System and Case Study
4.1. The Class Graph of Prototype System
4.2. The Configuration of Prototype System
4.3. A Case of Edge Service Migration on Prototype System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Negash, B.; Rahmani, A.M.; Liljeberg, P.; Jantsch, A. Fog computing fundamentals in the internet-of-things. In Fog Computing in the Internet of Things; Springer: Cham, Switzerland, 2018; pp. 3–13. [Google Scholar]
- Wang, B.; Kong, W.; Guan, H.; Xiong, N.N. Air Quality Forcasting based on Gated Recurrent Long Short Term Memory Model in Internet of Things. IEEE Access 2019, 7, 69524–69534. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, J.; Lai, Y.; Cai, Y.; Tian, H.; Chen, Y.; Wang, B. Data Collection from WSNs to the Cloud based on Mobile Fog Elements. Future Gener. Comput. Syst. 2020, 105, 864–872. [Google Scholar] [CrossRef]
- Wu, W.; Huang, H.; Wu, N.; Wang, Y.; Bhuiyan, M.Z.A.; Wang, T. An Incentive-Based Protection and Recovery Strategy for Secure Big Data in Social Networks. Inf. Sci. 2020, 508, 79–91. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Fang, W.; Xue, F.; Jin, H.; Zhang, Y.; Li, X. A Distributed ADMM Approach for Collaborative Regression Learning in Edge Computing. Comput. Mater. Contin. 2019, 59, 493–508. [Google Scholar]
- Li, S.; Liu, F.; Liang, J.; Cai, Z.; Liang, Z. Optimization of Face Recognition System Based on Azure IoT Edge. Comput. Mater. Contin. 2019, 61, 1377–1389. [Google Scholar] [CrossRef]
- Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Qi, L.; Wu, J.; Hayajneh, T. Preserving Balance between Privacy and Data Integrity in Edge-Assisted Internet of Things. IEEE Internet Things J. 2020, 7, 2679–2689. [Google Scholar] [CrossRef]
- Wang, T.; Mei, Y.; Jia, W.; Zheng, X.; Wang, G.; Xie, M. Edge-based Differenital Privacy Computing for Sensor-Cloud Systems. J. Parallel Distrib. Comput. 2020, 136, 75–85. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Zheng, J.X.; Xie, M. Crowdsourcing Mechanism for Trust Evaluation in CPCS based on Intelligent Mobile Edge Computing. Acm Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kun, Z.; Kang, Z.; Falin, F.; Hong, Y.; Yunlei, Y.; Deze, Z. Real-Time Massive Vector Field Data Processing in Edge Computing. Sensors 2019, 19, 2602. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA, 18-22 June 2018; pp. 4510–4520. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 1251–1258. [Google Scholar]
- Su, J.; Sheng, Z.; Xie, G.; Li, L.; Liu, G.; Alex, X. Fast splitting based tag identification algorithm for anti-collision in UHF RFID system. IEEE Trans. Commun. 2019, 67, 2527–2538. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Sheng, Z.; Leung Victor, C.M.; Chen, Y. Energy efficient tag identification algorithms for RFID: Survey, motivation and new design. IEEE Wirel. Commun. 2019, 26, 118–124. [Google Scholar] [CrossRef]
- Somayya, M.; Bhagat, P. Edge Computing in the IoT Environment: Principles, Features, and Models. In Edge Computing; Springer: Cham, Switzerland, 2018; pp. 23–43. [Google Scholar]
- Scheepers, M.J. Virtualization and containerization of application infrastructure: A comparison. In Proceedings of the 21st Twente Student Conference on IT, Enschede, The Netherlands, 23 June 2014; pp. 1–7. [Google Scholar]
- Le, S.; Hai, D.; Khadeer, H.O.; Khadeer, H.F.; Liu, A.X. A framework of cloud service selection with criteria interactions. Future Gener. Comput. Syst. 2019, 94, 749–764. [Google Scholar]
- Kazzaz, M.M.; Rychlý, M. Restful-based mobile Web service migration framework. In Proceedings of the 2017 IEEE International Conference on AI & Mobile Services (AIMS), Bangkok, Thailand, 25–27 August 2017; pp. 70–75. [Google Scholar]
- Jeong, T.; Chung, J.; Hong James, W.-K.; Ha, S. Towards a distributed computing framework for Fog. In Proceedings of the IEEE Edge World Congr. (Fwc), Santa Clara, CA, USA, 30 October–1 November 2017; pp. 1–6. [Google Scholar]
- Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A framework for edge node resource management. IEEE Trans. Serv. Comput. 2017. [Google Scholar] [CrossRef] [Green Version]
- Happ, D.; Wolisz, A. Towards gateway to Cloud offloading in IoT publish/subscribe systems. In Proceedings of the IEEE Second International Conference on Edge and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; pp. 101–106. [Google Scholar]
- Ibrahiem, O.; Chundrigar, S.; Huang, K.-L. Enabling Mobile Service Continuity across Orchestrated Edge Networks. IEEE Trans. Netw. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Puliafito, C.; Mingozzi, E.; Vallati, C.; Longo, F.; Merlino, G. Virtualization and Migration at the Network Edge: An Overview. In Proceedings of the 4th IEEE International Conference on Smart Computing, Taormina, Sicily, Italy, 18–22 June 2018; pp. 368–374. [Google Scholar]
- Tziritas, N.; Koziri, M.; Bachtsevani, A.; Loukopoulos, T.; Stamoulis, G.; Khan, S.U.; Xu, C.-Z. Data Replication and Virtual Machine Migrations to Mitigate Network Overhead in Edge Computing Systems. IEEE Trans. Sustain. Comput. 2017, 2, 320–332. [Google Scholar] [CrossRef]
- Bittencourt, L.F.; Lopes, M.M.; Petri, I.; Rana, O.F. Towards virtual machine migration in edge computing. In Proceedings of the IEEE 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 4–6 November 2015; pp. 1–8. [Google Scholar]
- Zhao, C.; Wang, T.; Yang, A. A Heterogeneous Virtual Machines Resource Allocation Scheme in Slices Architecture of 5G Edge Datacenter. Comput. Mater. Contin. 2019, 61, 423–437. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Zhao, J.; Di, X.; Liu, D. A vulnerability assessment method in industrial internet of things based on attack graph and maximum flow. IEEE Access 2018, 6, 8599–8609. [Google Scholar] [CrossRef]
- Github-hisangke/The-Prototype-System-of-Edge-Service-Migration. Available online: https://github.com/hisangke/The-prototype-system-of-edge-service-migration (accessed on 26 March 2020).
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and less 0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 14–18 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Barsoum, E.; Zhang, C.; Ferrer, C.C.; Zhang, Z. Training deep networks for facial expression recognition with crowd-sourced label distribution. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 279–283. [Google Scholar]
- Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De Geus, P. Malicious software classification using transfer learning of resnet-50 deep neural network. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
Symbol | Description |
---|---|
V | The set of edge nodes and is the number of edge nodes. |
Edge node i and t and . | |
The set of edge services of edge node . | |
The number of edge services of edge node . | |
S | The set of edge services. |
The j-th service of edge node . | |
The set of total resource of edge nodes. | |
The total resource of k-th type of . | |
The number of resource types of edge node . | |
The set of total cost resource | |
The set of total cost resource of edge nodes. | |
The cost resource of k-th type of . | |
The set of total cost resource of edge services. | |
The cost resource of k-th type of ’s j-th service. | |
The exponential function. | |
The storage size of t-th service of edge node . | |
The value of resource utilization of . | |
The value of resource usage of ’s j-th service. |
Edge Node | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 |
2 | 0.0 | 0.0 | 0.0 | 7.5 | 7.5 | 108.0 | 7.5 | 0.0 | 108.0 | 37.5 |
3 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 7.5 | 0.0 |
4 | 37.5 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 |
5 | 0.0 | 0.0 | 108.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
6 | 0.0 | 37.5 | 7.5 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
7 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 |
8 | 0.0 | 0.0 | 108.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 |
9 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 | 108.0 | 0.0 |
Service | Storage Size (MB) | Service | Storage Size (MB) |
---|---|---|---|
squeezenet1_1 [31] | 4.736 | resnet101 [32] | 170.449 |
squeezenet1_0 [31] | 4.785 | resnet152 [32] | 230.341 |
densenet121 [33] | 30.844 | alexnet [34] | 233.095 |
resnet18 [32] | 44.658 | vgg11 [35] | 506.835 |
densenet169 [33] | 54.708 | vgg11_bn [35] | 506.881 |
densenet201 [33] | 77.373 | vgg13 [36] | 507.540 |
resnet34 [32] | 83.261 | vgg13_bn [36] | 507.589 |
resnet50 [37] | 97.753 | vgg16 [35] | 527.795 |
googlenet [38] | 103.814 | vgg19 [36] | 548.051 |
Edge Node | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Cloud |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 0 | 15 |
1 | 2 | 0 | 0 | 1 | 3 | 5 | 0 | 4 | 7 | 0 | 18 |
2 | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 4 | 5 | 2 | 2 |
3 | 3 | 2 | 0 | 0 | 3 | 0 | 2 | 3 | 4 | 1 | 14 |
4 | 3 | 3 | 0 | 4 | 0 | 3 | 1 | 3 | 1 | 0 | 26 |
5 | 2 | 1 | 1 | 3 | 4 | 0 | 0 | 0 | 2 | 0 | 28 |
6 | 1 | 10 | 0 | 2 | 2 | 2 | 0 | 0 | 1 | 0 | 8 |
7 | 1 | 4 | 1 | 1 | 5 | 6 | 0 | 0 | 3 | 0 | 20 |
8 | 2 | 2 | 1 | 3 | 6 | 5 | 2 | 7 | 0 | 1 | 20 |
9 | 0 | 0 | 4 | 1 | 1 | 4 | 0 | 7 | 10 | 0 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Z.; Xiang, K.; Zhao, L.; Cheng, B.; Qian, J.; Wu, J. IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment. Sensors 2020, 20, 2294. https://doi.org/10.3390/s20082294
Zhai Z, Xiang K, Zhao L, Cheng B, Qian J, Wu J. IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment. Sensors. 2020; 20(8):2294. https://doi.org/10.3390/s20082294
Chicago/Turabian StyleZhai, Zhongyi, Ke Xiang, Lingzhong Zhao, Bo Cheng, Junyan Qian, and Jinsong Wu. 2020. "IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment" Sensors 20, no. 8: 2294. https://doi.org/10.3390/s20082294
APA StyleZhai, Z., Xiang, K., Zhao, L., Cheng, B., Qian, J., & Wu, J. (2020). IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment. Sensors, 20(8), 2294. https://doi.org/10.3390/s20082294