A Noise Tolerant Spread Spectrum Sound-Based Local Positioning System for Operating a Quadcopter in a Greenhouse
Abstract
:1. Introduction
2. Spread Spectrum Sound-Based Local Positioning System
3. Materials and Methods
3.1. Acoustic Noise Measurement
3.2. Noise Tolerance Against Quadcopter
3.3. Positioning Experiment in the Greenhouse with Quadcopter Noise
4. Results and Discussions
4.1. Acoustic Noise of the Quadcopter
4.2. Noise Tolerance Against Quadcopter
4.3. Positioning Results in Greenhouse with Quadcopter Noise
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Acoustic Noise Distribution over The Quadcopter
References
- Simon, J.; Petkovic, I.; Petkovic, D.; Petkovic, Á. Navigation and Applicability of Hexa Rotor Drones in Greenhouse Environment. Teh. Vjesn. 2018, 25, 249–255. [Google Scholar]
- Reinecke, M.; Prinsloo, T. The influence of drone monitoring on crop health and harvest size. In Proceedings of the 1st International Conference on Next Generation Computing Applications (NextComp), Mauritius, 19–21 July 2017; pp. 5–10. [Google Scholar]
- Calero, D.; Fernandez, E.; Pares, M.E.; Angelats, E. NDVI Point Cloud Generator Tool Using Low-Cost RGB-D Sensor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7860–7865. [Google Scholar]
- Huang, Y.; Reddy, K.N.; Fletcher, R.S.; Pennington, D. UAV Low-Altitude Remote Sensing for Precision Weed Management. Weed Technol. 2018, 32, 2–6. [Google Scholar] [CrossRef]
- Barrero, O.; Rojas, D.; Gonzalez, C.; Perdomo, S. Weed detection in rice fields using aerial images and neural networks. In Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, 31 August–2 September 2016; pp. 1–4. [Google Scholar]
- Christiansen, M.; Laursen, M.; Jørgensen, R.; Skovsen, S.; Gislum, R. Designing and Testing a UAV Mapping System for Agricultural Field Surveying. Sensors 2017, 17, 2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faiçal, B.S.; Freitas, H.; Gomes, P.H.; Mano, L.Y.; Pessin, G.; de Carvalho, A.C.P.L.F.; Krishnamachari, B.; Ueyama, J. An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 2017, 138, 210–223. [Google Scholar] [CrossRef]
- Roldán, J.; Joossen, G.; Sanz, D.; del Cerro, J.; Barrientos, A. Mini-UAV Based Sensory System for Measuring Environmental Variables in Greenhouses. Sensors 2015, 15, 3334–3350. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, D.; Edan, Y.; Shani, G. Detecting Tomato Flowers in Greenhouses Using Computer Vision. Int. J. Comput. Electr. Autom. Control Inf. Eng. 2017, 11, 104–109. [Google Scholar]
- Gu, Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Rezazadeh, J.; Sandrasegaran, K.; Kong, X. A location-based smart shopping system with IoT technology. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 748–753. [Google Scholar]
- Rezazadeh, J.; Subramanian, R.; Sandrasegaran, K.; Kong, X.; Moradi, M.; Khodamoradi, F. Novel iBeacon Placement for Indoor Positioning in IoT. IEEE Sens. J. 2018, 18, 10240–10247. [Google Scholar] [CrossRef]
- Mazhar, F.; Khan, M.G.; Sällberg, B. Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations. Wirel. Pers. Commun. 2017, 97, 4467–4491. [Google Scholar] [CrossRef]
- Nikookar, H.; Prasad, R. Introduction to Ultra Wideband for Wireless Communications; Springer: Dordrecht, The Netherland, 2009; ISBN 978-1-4020-6633-7. [Google Scholar]
- Achtelik, M.; Zhang, T.G.; Kuhnlenz, K.; Buss, M. Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 2863–2869. [Google Scholar]
- Svalastog, M.S. Indoor Positioning-Technologies, Services and Architectures. Master Thesis, University of Oslo, Oslo, Norway, 2007. [Google Scholar]
- Widodo, S.; Shiigi, T.; Than, N.M.; Kikuchi, H.; Yanagida, K.; Nakatsuchi, Y.; Ogawa, Y.; Kondo, N. Wind compensation for an open field spread spectrum sound-based positioning system using a base station configuration. Eng. Agric. Environ. Food 2014, 7, 127–132. [Google Scholar] [CrossRef]
- Huang, Z.; Fukuda, H.; Wai Jacky, T.L.; Zhao, X.; Habaragamuwa, H.; Shiigi, T.; Suzuki, T.; Naoshi, K. Greenhouse Based Orientation Measurement System using Spread Spectrum Sound. IFAC-Pap. OnLine 2018, 51, 108–111. [Google Scholar] [CrossRef]
- Huang, Z.; Ono, M.; Shiigi, T.; Suzuki, T.; Habaragamuwa, H.; Nakanishi, H.; Kondo, N. Is spread spectrum sound a robust local positioning system for a quadcopter operating in a greenhouse? Chem. Eng. Transact. 2017, 58, 829–834. [Google Scholar]
- Smith, A.; Balakrishnan, H.; Goraczko, M.; Priyantha, N. Tracking moving devices with the cricket location system. In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services; ACM Press: Boston, MA, USA, 2004; p. 190. [Google Scholar]
- Solomon, W.G.; Guang, G. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. In Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar; Cambridge University Press: Cambridge, UK, 2005; ISBN 978-0-521-82104-9. [Google Scholar]
- Sawlikar, A.; Sharma, M. Analysis of Different Pseudo Noise Sequences. Int. J. Comput. Technol. Electron. Eng. 2011, 1, 156–161. [Google Scholar]
- Abdullahi, H.S.; Mahieddine, F.; Sheriff, R.E. Technology Impact on Agricultural Productivity: A Review of Precision Agriculture Using Unmanned Aerial Vehicles. In Wireless and Satellite Systems; Pillai, P., Hu, Y.F., Otung, I., Giambene, G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 154, pp. 388–400. ISBN 978-3-319-25478-4. [Google Scholar]
- Cheung, K.W.; So, H.C.; Ma, W.-K.; Chan, Y.T. Least Squares Algorithms for Time-of-Arrival-Based Mobile Location. IEEE Trans. Signal Process. 2004, 52, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Intaratep, N.; Alexander, W.N.; Devenport, W.J.; Grace, S.M.; Dropkin, A. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016. [Google Scholar]
- Widodo, S. Wind and Doppler Shift Compensation for Spread Spectrum Sound-based Positioning System; Kyoto University: Kyoto, Japan, 2013; p. 95. [Google Scholar]
- Pereda Albarrán, M.Y.; Kreimeier, M.; Enders, W.; Stumpf, E. Noise evaluation of battery powered small aircraft. CEAS Aeronaut. J. 2019, 11, 125–135. [Google Scholar] [CrossRef]
- Jianu, O.; Rosen, M.A.; Naterer, G. Noise Pollution Prevention in Wind Turbines: Status and Recent Advances. Sustainability 2012, 4, 1104–1117. [Google Scholar] [CrossRef] [Green Version]
- Shiigi, T.; Kondo, N.; Tsuzuki, S.; Okada, S.; Maekawa, A.; Nobara, T.; Sakakibara, M.; Watanabe, K.; Naniwada, Y.; Okada, K. Position Detecting Method Using Spread Spectrum Sound-Correction Method of Measurement Error by Compensating Wind and Temperature-. IFAC Proc. Vol. 2010, 43, 45–48. [Google Scholar] [CrossRef]
- Shiigi, T.; Kondo, N.; Ogawa, Y.; Suzuki, T.; Harshana, H. Temperature compensation method using base-station for spread spectrum sound-based positioning system in green house. Eng. Agric. Environ. Food 2017, 10, 233–242. [Google Scholar] [CrossRef]
- Buckingham, M.J. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 1997, 102, 2579–2596. [Google Scholar] [CrossRef] [Green Version]
- Bass, H.E.; Sutherland, L.C.; Zuckerwar, A.J.; Blackstock, D.T.; Hester, D.M. Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 1995, 97, 680–683. [Google Scholar] [CrossRef]
- Hellmers, H.; Kasmi, Z.; Norrdine, A.; Eichhorn, A. Accurate 3D Positioning for a Mobile Platform in Non-Line-of-Sight Scenarios Based on IMU/Magnetometer Sensor Fusion. Sensors 2018, 18, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atri Mandal, C.V.L. Beep: 3D indoor positioning using audible sound. In Proceedings of the Second IEEE Consumer Communications and Networking Conference–CCNC, Las Vegas, NV, USA, 3–6 January 2005; pp. 348–353. [Google Scholar]
- Kim, H.-S.; Choi, J.-S. Advanced indoor localization using ultrasonic sensor and digital compass. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 223–226. [Google Scholar]
Group | Mlength | ||
---|---|---|---|
Ⅰ | 1023 | 20, 24, 28, 32 | 4 |
Ⅱ | 127, 255, 511, 1023, 2047 | 24 | 12 |
Ⅲ | 1023 | 24 | 4, 6, 12, 16, 24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Tsay, L.W.J.; Shiigi, T.; Zhao, X.; Nakanishi, H.; Suzuki, T.; Ogawa, Y.; Kondo, N. A Noise Tolerant Spread Spectrum Sound-Based Local Positioning System for Operating a Quadcopter in a Greenhouse. Sensors 2020, 20, 1981. https://doi.org/10.3390/s20071981
Huang Z, Tsay LWJ, Shiigi T, Zhao X, Nakanishi H, Suzuki T, Ogawa Y, Kondo N. A Noise Tolerant Spread Spectrum Sound-Based Local Positioning System for Operating a Quadcopter in a Greenhouse. Sensors. 2020; 20(7):1981. https://doi.org/10.3390/s20071981
Chicago/Turabian StyleHuang, Zichen, Lok Wai Jacky Tsay, Tomoo Shiigi, Xunyue Zhao, Hiroaki Nakanishi, Tetsuhito Suzuki, Yuichi Ogawa, and Naoshi Kondo. 2020. "A Noise Tolerant Spread Spectrum Sound-Based Local Positioning System for Operating a Quadcopter in a Greenhouse" Sensors 20, no. 7: 1981. https://doi.org/10.3390/s20071981