Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications
Abstract
:1. Introduction
2. Antenna Design and Configuration
3. Parametric Study
4. Antenna Simulation and Measurement Result
4.1. Simulated Results
4.2. Antenna Fabrication and Measurement Results
5. Time Domain Performance
6. Comparison
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, D.; Yang, C.; Zhu, M.; Chen, Z. Design of WLAN/LTE/UWB antenna with improved pattern uniformity using ground-cooperative radiating structure. IEEE Trans. Antennas Propag. 2016, 64, 271–276. [Google Scholar] [CrossRef]
- Abdelhamid, M.M.; Allam, A.M. Detection of lung cancer using ultra wide band antenna. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–5. [Google Scholar]
- Mahmud, Z.; Islam, M.T.; Samsuzzaman, M. A high performance UWB antenna design for microwave imaging system. Microw. Opt. Technol. Lett. 2016, 58, 1824–1831. [Google Scholar] [CrossRef]
- Dubost, G.; Zisler, S. Antennas a Large Band; Masson: New York, NY, USA, 1976. [Google Scholar]
- Kumar, S.; Kim, K.W.; Choi, H.C.; Saxena, S.; Tiwari, R.; Khandelwal, M.K.; Palaniswamy, S.K.; Kanaujia, B.K. A low profile circularly polarized UWB antenna with integrated GSM band for wireless communication. AEU Int. J. Electron. Commun. 2018, 93, 224–232. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. Asymmetric U-shaped printed monopole antenna embedded with T-shaped strip for bluetooth, WLAN/WiMAX applications. Wirel. Netw. 2018, 26, 51–61. [Google Scholar] [CrossRef]
- Ooi, B.; Zhao, G.; Leong, M.; Chua, K.; Albert, C.L. Wideband LTCC CPW-fed two-layered monopole antenna. Electron. Lett. 2005, 41, 889. [Google Scholar] [CrossRef]
- Paga, P.; Nagaraj, H.C.; Rukmini, T.S.; Nithin, N.E. Design and fabrication of a microstrip printed T monopole antenna for ISM application. In Proceedings of the 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), Odisha, India, 18–20 December 2015; pp. 264–267. [Google Scholar]
- Lizzi, L.; Azaro, R.; Oliveri, G.; Massa, A. Printed UWB Antenna Operating Over Multiple Mobile Wireless Standards. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1429–1432. [Google Scholar] [CrossRef]
- Tripathi, S.; Yadav, S.; Mohan, A. Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement. IET Microw. Antennas Propag. 2014, 8, 1445–1450. [Google Scholar] [CrossRef]
- Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Sedghi, T.; Aribi, T.; Virdee, B.S. UWB CPW-Fed Fractal Patch Antenna With Band-Notched Function Employing Folded T-Shaped Element. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 504–507. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, R.; Geng, J.; Ding, M. Printed Omni-Directional UWB Monopole Antenna With Very Compact Size. IEEE Trans. Antennas Propag. 2008, 56, 896–899. [Google Scholar] [CrossRef]
- Azim, R.; Islam, M.T.; Misran, N. Compact Tapered-Shape Slot Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1190–1193. [Google Scholar] [CrossRef]
- Ghaderi, M.R.; Mohajeri, F. A Compact Hexagonal Wide-Slot Antenna With Microstrip-Fed Monopole for UWB Application. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 682–685. [Google Scholar] [CrossRef]
- Sim, C.; Chung, W.; Lee, C. Compact Slot Antenna for UWB Applications. Design 2010, 9, 63–66. [Google Scholar] [CrossRef]
- Nosrati, M.; Tavassolian, N. Miniaturized Circularly Polarized Square Slot Antenna With Enhanced Axial-Ratio Bandwidth Using an Antipodal Y-strip. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 817–820. [Google Scholar] [CrossRef]
- Selek, A.; Turkmen, C.; Secmen, M. Compact planar folded monopole antenna with coupling mechanism for Quad ISM band, GNSS and UMTS applications. In Proceedings of the 2018 11th German Microwave Conference (GeMiC) 2018, Freiburg, Germany, 12–14 March 2018; pp. 211–214. [Google Scholar]
- Gyasi, K.O.; Wen, G.; Inserra, D.; Affum, E.A.; Huang, Y.; Li, J.; Basit, M.A.; Zhang, H. A Compact Broadband Circularly Polarized Slot Antenna With Two Linked Rectangular Slots and an Inverted-F Feed Line. IEEE Trans. Antennas Propag. 2018, 66, 7374–7377. [Google Scholar] [CrossRef]
- Jhajharia, T.; Tiwari, V.; Yadav, D.; Rawat, S.; Bhatnagar, D. Wideband circularly polarised antenna with an asymmetric meandered-shaped monopole and defected ground structure for wireless communication. IET Microw. Antennas Propag. 2018, 12, 1554–1558. [Google Scholar] [CrossRef]
- Tran, D.; Aubry, P.; Szilagyi, A.; Lager, I.E.; Yarovyi, O.; Ligthart, L.P. On the Design of a Super Wideband Antenna; Ultra, W., Boris, L., Eds.; InTech Publication: Rijeka, Croatia, 2011; pp. 399–426. [Google Scholar]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. A modified microstrip line fed compact UWB antenna for WiMAX/ISM/WLAN and wireless communications. AEU Int. J. Electron. Commun. 2019, 104, 58–65. [Google Scholar] [CrossRef]
- Mohandoss, S.; Thipparaju, R.R.; Reddy, B.N.B.; Palaniswamy, S.K.; Marudappa, P. Fractal based ultra-wideband antenna development for wireless personal area communication applications. AEU Int. J. Electron. Commun. 2018, 93, 95–102. [Google Scholar] [CrossRef]
- Paul, P.M.; Kandasamy, K.; Sharawi, M.S.; Majumder, B. Dispersion-Engineered Transmission Line Loaded Slot Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 323–327. [Google Scholar] [CrossRef]
- Srifi, M.N.; El Mrabet, O.; Falcone, F.; Ayza, M.S.; Essaaidi, M. A novel compact printed circular antenna for very ultrawideband applications. Microw. Opt. Technol. Lett. 2009, 51, 1130–1133. [Google Scholar] [CrossRef]
- Azari, A. A new super wideband fractal microstrip antenna. IEEE Trans. Antennas Propag. 2011, 59, 1724–1727. [Google Scholar] [CrossRef]
- Gorai, A.; Karmakar, A.; Pal, M.; Ghatak, R. A CPW-fed propeller shaped monopole antenna with super wideband characteristics. Prog. Electromagn. Res. C 2013, 45, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Boyle, K. Antennas from Theory to Practice; Wiley & Sons Ltd: West Sussex, UK, 2008. [Google Scholar]
- Pozar, D.M. On the design of low sidelobe microstrip arrays. In Proceedings of the Digest on Antennas and Propagation Society International Symposium, San Jose, CA, USA, 26–30 June 1989; Volume 2, pp. 905–908. [Google Scholar]
- Mukesh, K.K.; Binod, K.K.; Sachin, K. Defected Ground Structure: Fundamentals, Analysis, and Applications in Modern Wireless Trends. Int. J. Antennas Propag. 2017, 2017, 1–22. [Google Scholar]
- Quintero, G.; Zurcher, J.F.; Skrivervik, A.K. System fidelity factor: A new method for comparing UWB antennas. IEEE Trans. Antennas Propag. 2011, 59, 2502–2512. [Google Scholar]
- Biswas, B.; Ghatak, R.; Poddar, D.R. A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System. IEEE Trans. Antennas Propag. 2017, 65, 6126–6129. [Google Scholar] [CrossRef]
- Tang, M.C.; Ziolkowski, R.W.; Xiao, S. Compact hyper-band printed slot antenna with stable radiation properties. IEEE Trans. Antennas Propag. 2014, 62, 2962–2969. [Google Scholar] [CrossRef]
- Srifi, M.N.; Podilchak, S.K.; Essaaidi, M.; Antar, Y.M.M. Compact disc monopole antennas for current and future ultrawideband (UWB) applications. IEEE Trans. Antennas Propag. 2011, 59, 4470–4480. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications. AEU Int. J. Electron. Commun. 2016, 70, 1645–1650. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. A new planar broadband antenna based on meandered line loops for portable wireless communication devices. Radio Sci. 2016, 51, 1109–1117. [Google Scholar] [CrossRef]
- Singhal, S.; Singh, A.K. CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves Antennas Propag. 2016, 10, 1701–1707. [Google Scholar] [CrossRef]
- Hakimi, S.; Rahim, S.K.A.; Abedian, M.; Noghabaei, S.M.; Khalily, M. CPW-fed transparent antenna for extended ultrawideband applications. EEE Antennas Wirel. Propag. Lett. 2014, 13, 1251–1254. [Google Scholar] [CrossRef]
Parameters | Values (mm) | Parameters | Values (mm) | Parameters | Values (mm) |
---|---|---|---|---|---|
a | 7 | L | 35 | z | 15.2 |
b | 2.4 | S | 35 | W | 9.10 |
c | 1.6 | n | 3.5 | j | 4 |
d | 5.2 | p | 8.5 | k | 1 |
e | 13.4 | q | 18 | x | 7 |
f | 5 | r | 9 | m | 2.5 |
i | 5 | u | 1.5 | T | 2.5 |
O | 5 | v | 11.7 | ||
g | 2.8 | y | 2.8 |
Ref. No’s | Bandwidth (%) | Dimension (mm3) | Efficiency (%) | Lower Frequency (GHz) | Bandwidth Ratio |
---|---|---|---|---|---|
[6] | 107.35 | 34 × 20 × 1.6 | 90 | 2.27 | 3.3:1 |
[10] | 122 | 31 × 28 × 1.6 | --- | 3 | 4.26:1 |
[11] | 129.24 | 14 × 18 × 1 | --- | 2.94 | 4.65:1 |
[21] | 153 | 25 × 17 × 1.6 | 86 | 2.94 | 7.55:1 |
[22] | 135.2 | 32 × 32 × 1.6 | 79.21 | 2.9 | 5.17:1 |
[23] | 138 | 50 × 50 × 1.52 | 88 | 2.1 | 5.47:1 |
[24] | 165.7 | 30 × 35 × 0.49 | 96 | 2.7 | 10.6:1 |
[25] | 133 | 60 × 60 × 1.524 | --- | 10 | 5:1 |
[26] | 168 | 38 × 55 × 1.6 | --- | 3 | 11.6:1 |
[32] | 163 | 40 × 30 × 1.6 | 75 | 2.26 | 9.8:1 |
[33] | 160.4 | 25 × 35 × 0.83 | -- | 3.5 | 9.11:1 |
[34] | 168.62 | 13.4 × 5.2 × 1.6 | 65 | 0.4 | 11.75:1 |
[35] | 150 | 38.5 × 36.6 × 0.8 | 90.1 | 0.55 | 6.93:1 |
[36] | 166.6 | 30 × 28 × 1.6 | 90 | 3.4 | 11:1 |
[37] | 164 | 30 × 45 × 0.175 | --- | 3.15 | 10.15:1 |
Proposed work | 174.68 | 35 × 35 × 1.57 | 92.7 | 3.01 | 13.009:1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; Fahad, A.K.; He, W. Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications. Sensors 2020, 20, 1735. https://doi.org/10.3390/s20061735
Ullah S, Ruan C, Sadiq MS, Haq TU, Fahad AK, He W. Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications. Sensors. 2020; 20(6):1735. https://doi.org/10.3390/s20061735
Chicago/Turabian StyleUllah, Shahid, Cunjun Ruan, Muhammad Shahzad Sadiq, Tanveer Ul Haq, Ayesha Kosar Fahad, and Wenlong He. 2020. "Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications" Sensors 20, no. 6: 1735. https://doi.org/10.3390/s20061735