Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Materials, Measurement and Evaluation
2.1.1. CSG Architecture
2.1.2. Experimental Site and Measurement Methods
2.1.3. Evaluation Parameters
2.2. Classic Methods of Estimating Hi
2.3. Tomato Water Requirement Calculation
2.4. LMS Filter
2.5. Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT), and Pass Band Characteristics of Filters
2.5.1. DFT and FFT
2.5.2. Filter Pass Band Characteristic
2.6. Proposal Methods and Evaluation Procedures
3. Results and Discussion
3.1. Determination of μ and L
3.2. Estimation of Hi and Tomato Water Requirement Calculation under Sunny, Partly Cloudy and Overcast Conditions
3.2.1. Estimation of Hi
3.2.2. Tomato Water Requirement
3.3. Overall Performance of Estimation of Hi and Tomato Water Requirement Calculation
3.3.1. Overall Performance of Estimation of Hi
3.3.2. Overall Performance of Tomato Water Requirement Calculation
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Hs | solar radiation inside greenhouse measured by sensors (Wm−2) |
Hf | solar radiation inside greenhouse estimated by LMS filter (Wm−2) |
Hc | solar radiation inside greenhouse estimated by astronomy and geometry method (Wm−2) |
Hout | horizontal solar radiation outside the greenhouse (Wm−2) |
H0 | extraterrestrial solar radiation (Wm−2) |
Kt | clearness index (dimensionless) |
Hi | solar radiation inside greenhouse (Wm−2) |
Hb | beam part of extraterrestrial solar radiation (Wm−2) |
Hd | diffuse part of extraterrestrial solar radiation (Wm−2) |
τb | film transmittance of beam radiation (dimensionless) |
τd | film transmittance of beam radiation (dimensionless) |
τg | greenhouse transmittance (dimensionless) |
Ri | energy intercepted by canopy (MJ m−2 day−1) |
Rs | energy intercepted by canopy calculated by sensor data (MJ m−2 day−1) |
Rf | energy intercepted by canopy calculated by LMS method (MJ m−2 day−1) |
Rc | energy intercepted by canopy calculated by astronomy and geometry method (MJ m−2 day−1) |
Vu | water requirement volume (mL plant−1) |
Vs | water requirement volume calculated by sensor data (mL plant−1) |
Vf | water requirement volume calculated by LMS method (mL plant−1) |
Vc | water requirement volume calculated by astronomy and geometry method (mL plant−1) |
Gsc | solar constant (1367 Wm−2) |
δ | daily solar declination (degree) |
ωs | sunset hour angle (degree) |
ϕ | latitude of the location (degree) |
nday | the day number of the year (dimensionless) |
LAI | leaf area index (dimensionless) |
k | extinction factor (dimensionless) |
GDD | growing degree days (dimensionless) |
Ts | sampling interval(s) |
Tstart | start time of water requirement calculation (hh: mm) |
Tstop | stop time of water requirement calculation (hh: mm) |
μ | step size of LMS filter (dimensionless) |
λ* | latent heat of vaporization (2.45 MJ kg−1) |
L | length of LMS filter (dimensionless) |
λ | eigenvalue of auto correlation matrix of the input signal |
Rxx | auto correlation matrix of the input signal |
Rdx | cross correlation matrix of the input and desired signals |
PEcs | water volumes percent error calculated according to astronomy and geometry method and sensors data (dimensionless) |
PEfs | water volumes percent error calculated according to LMS method and sensors data (dimensionless) |
References
- Liang, L.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Peng, P.; Zhao, G. Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. J. Clean. Prod. 2019, 208, 285–296. [Google Scholar] [CrossRef]
- Wang, T.; Wu, G.; Chen, J.; Cui, P.; Chen, Z.; Yan, Y.; Zhang, Y.; Li, M.; Niu, D.; Li, B.; et al. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renew. Sustain. Energy Rev. 2017, 70, 1178–1188. [Google Scholar] [CrossRef]
- Gocic, M.; Motamedi, S.; Shamshirband, S.; Petkovic, D.; Chintalapati, S.; Hashim, R.; Arif, M. Soft computing approaches for forecasting reference evapotranspiration. Comput. Electron. Agric. 2015, 113, 164–173. [Google Scholar] [CrossRef]
- Petkovic, D.; Gocic, M.; Trajkovic, S.; Shamshirband, S.; Motamedi, S.; Hashim, R.; Bonakdari, H. Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Comput. Electron. Agric. 2015, 114, 277–284. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, J.; Dawuda, M.M.; Xie, J.; Yu, J.; Gan, Y.; Li, J. Innovative passive heat-storage walls improve thermal performance and energy efficiency in Chinese solar greenhouses for non-arable lands. Sol. Energy 2019, 190, 561–575. [Google Scholar] [CrossRef]
- Tong, G.; Christopher, D.M.; Li, T.; Wang, T. Passive solar energy utilization: A review of cross-section building parameter selection for Chinese solar greenhouses. Renew. Sustain. Energy Rev. 2013, 26, 540–548. [Google Scholar] [CrossRef]
- Bontsema, J.; Van Henten, E.J.; Gieling, T.H.; Swinkels, G.L. The effect of sensor errors on production and energy consumption in greenhouse horticulture. Comput. Electron. Agric. 2011, 79, 63–66. [Google Scholar] [CrossRef]
- Ma, J.; Bi, Z.; Shi, Y.; Man, K.L.; Pan, X.; Wang, J. OL-SVR based soft-sensor for real-time estimation of solar irradiance. In Proceedings of the 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Jeju, Korea, 25–28 October 2016. [Google Scholar]
- Lopezlapena, O.; Pallasareny, R. Solar energy radiation measurement with a low-power solar energy harvester. Comput. Electron. Agric. 2018, 151, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Kipp and Zonen. Available online: http://www.kippzonen.com/ProductGroup/3/Pyranometers (accessed on 12 November 2019).
- Pieters, J.; Deltour, J.M. Modelling solar energy input in greenhouses. Sol. Energy 1999, 67, 119–130. [Google Scholar] [CrossRef]
- Sonsteby, A.; Solhaug, K.A.; Heide, O.M. Functional growth analysis of ‘Sonata’ strawberry plants grown under controlled temperature and daylength conditions. Sci. Hortic. Amst. 2016, 211, 26–33. [Google Scholar] [CrossRef]
- Zhong, P.; Yang, S.; Qiao, R.; Wang, T. Effect of light intensity on main quality of strawberry. Southwest China J. Agric. Sci. 2011, 24, 1219–1221. [Google Scholar]
- Huang, S.; Yan, H.; Zhang, C.; Wang, G.; Acquah, S.J.; Yu, J.; Opoku Darko, R. Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse. Agric. Water Manag. 2020, 228, 105861. Available online: https://www.sciencedirect.com/science/article/pii/S0378377419305827 (accessed on 10 December 2019). [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K.K. Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Comput. Electron. Agric. 2018, 150, 235–244. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K.K. Sensitivity analysis of CSGHEAT model for estimation of heating consumption in a Chinese-style solar greenhouse. Comput. Electron. Agric. 2018, 154, 99–111. [Google Scholar] [CrossRef]
- Tong, G.; Christopher, D.M.; Li, B. Numerical modelling of temperature variations in a Chinese solar greenhouse. Comput. Electron. Agric. 2009, 68, 129–139. [Google Scholar] [CrossRef]
- Sethi, V.P. On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation. Sol. Energy 2009, 83, 21–38. [Google Scholar] [CrossRef]
- Gavilan, P.; Ruiz, N.; Lozano, D. Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agric. Water Manag. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Coulson, K.L. Solar and Terrestrial Radiation: Methods and Measurements, 1st ed.; Academic Press: New York, NY, USA, 1975; pp. 1–158. [Google Scholar]
- Inman, R.H.; Pedro, H.T.; Coimbra, C.F. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013, 39, 535–576. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Mohammadi, K.; Goudarzi, N. Prediction of horizontal diffuse solar radiation using clearness index based empirical models: A case study. Int. J. Hydrog. Energy 2016, 41, 21888–21898. [Google Scholar] [CrossRef]
- Muneer, T.; Hawas, M.M.; Sahili, K. Correlation between hourly diffuse and global radiation for New Delhi. Energy Convers. Manag. 1984, 24, 265–267. [Google Scholar] [CrossRef]
- Cabrera, F.J.; Baille, A.; Lopez, J.C.; Gonzalezreal, M.M.; Perezparra, J. Effects of cover diffusive properties on the components of greenhouse solar radiation. Biosyst. Eng. 2009, 103, 344–356. [Google Scholar] [CrossRef]
- Tong, X.; Sun, Z.; Sigrimis, N.; Li, T. Energy sustainability performance of a sliding cover solar greenhouse: Solar energy capture aspects. Biosyst. Eng. 2018, 176, 88–102. [Google Scholar] [CrossRef]
- Elmaghlany, W.M. A novel analytical solution for the transmissivity of curved transparent surfaces with application to solar radiation. Appl. Therm. Eng. 2016, 100, 392–397. [Google Scholar] [CrossRef]
- Baptista, F.J.; Bailey, B.J.; Meneses, J.F. Effect of nocturnal ventilation on the occurrence of Botrytis cinerea in Mediterranean unheated tomato greenhouses. Crop Prot. 2012, 32, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Yang, Y.; Cui, Y.; Bai, K.; Luo, T.; Dai, J.; Wang, W.; Luo, Y. Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorgio, F.; Tognoni, F.; Pardossi, A. An aggregated model for water requirements of greenhouse tomato grown in closed rockwool culture with saline water. Agric. Water Manag. 2007, 88, 73–82. [Google Scholar] [CrossRef]
- Troparevsky, M.I.; Dattellis, C.E. On the convergence of the LMS algorithm in adaptive filtering. Signal Process. 2004, 84, 1985–1988. [Google Scholar] [CrossRef]
- Parra, I.E.; Hernandez, W.; Fernandez, E. On the convergence of LMS filters under periodic signals. Digit. Signal Process. 2013, 23, 808–816. [Google Scholar] [CrossRef]
- Zhu, Z.; Gao, X.; Cao, L.; Pan, D.; Cai, Y.; Zhu, Y. Analysis on the adaptive filter based on LMS algorithm. Optik 2016, 127, 4698–4704. [Google Scholar] [CrossRef]
- Tan, L.; Jiang, J. Digital Signal Processing, 3rd ed.; Academic Press: Oxford, OH, USA, 2019; pp. 421–474. [Google Scholar]
- Theodoridis, S. Machine Learning, 4th ed.; Academic Press: Oxford, OH, USA, 2015; pp. 161–231. [Google Scholar]
- Lu, W.; Zhang, Y.; Fang, H.; Ke, X.; Yang, Q. Modelling and experimental verification of the thermal performance of an active solar heat storage-release system in a Chinese solar greenhouse. Biosyst. Eng. 2017, 160, 12–24. [Google Scholar] [CrossRef]
- Gutierrezcorea, F.V.; Mansocallejo, M.; Morenoregidor, M.P.; Velascogomez, J. Spatial Estimation of Sub-Hour Global Horizontal Irradiance Based on Official Observations and Remote Sensors. Sensors 2014, 14, 6758–6787. [Google Scholar] [CrossRef] [Green Version]
- Bo, Z.; Yang, J.; Sun, C.; Jiang, S. A filtered-x weighted accumulated LMS algorithm: Stochastic analysis and simulations for narrowband active noise control system. Signal Process. 2014, 104, 296–310. [Google Scholar] [CrossRef]
- Nakamori, S. Design of RLS-FIR filter using covariance information in linear continuous-time stochastic systems. Appl. Math. Comput. 2013, 219, 9598–9608. [Google Scholar] [CrossRef] [Green Version]
- Korki, M.; Zayyani, H. Weighted diffusion continuous mixed p-norm algorithm for distributed estimation in non-uniform noise environment. Signal Process. 2019, 164, 225–233. [Google Scholar] [CrossRef]
- Singh, T.S.; Chatterjee, A. A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters. Measurement 2011, 44, 1915–1923. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Geng, J.; Chen, Z. Modeling of hysteresis in piezoelectric actuator based on adaptive filter. Sens. Actuators A Phys. 2013, 189, 420–428. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Badescu, V.; Dumitrescu, A. New types of simple non-linear models to compute solar global irradiance from cloud cover amount. J. Atmos. Sol. Terr. Phys. 2014, 117, 54–70. [Google Scholar] [CrossRef]
- Badescu, V.; Dumitrescu, A. New models to compute solar global hourly irradiation from point cloudiness. Energy Convers. Manag. 2013, 67, 75–91. [Google Scholar] [CrossRef]
- Son, J.; Park, Y.; Lee, J.; Kim, H. Sensorless PV power forecasting in grid-connected buildings through deep learning. Sensors 2018, 18, 2529. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A.; Myers, D.R. Validation and Ranking Methodologies for Solar Radiation Models. In Modeling Solar Radiation at the Earth’s Surface: Recent Advances; Badescu, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 479–510. [Google Scholar]
- Villarrubia, G.; De Paz, J.F.; La Iglesia, D.H.; Bajo, J. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. Sensors 2017, 17, 1775. [Google Scholar] [CrossRef] [Green Version]
Evaluation Parameter | M | |||||
---|---|---|---|---|---|---|
10−5 | 2 × 10−5 | 5 × 10−5 | 10−4 | 2 × 10−4 | 5 × 10−4 | |
R2 | 0.3959 | 0.8031 | 0.8384 | 0.8254 | 0.7554 | 0.6010 |
RMSE (Wm−2) | 72.7 | 41.5 | 37.6 | 39.1 | 46.2 | 59.0 |
rRMSE (%) | 44.6 | 25.5 | 23.1 | 23.4 | 28.4 | 36.2 |
MAE (Wm−2) | 58.7 | 30.2 | 25.3 | 25.8 | 33.6 | 45.9 |
Date | Calculated Value | ||||
---|---|---|---|---|---|
Vc (mL·Plant−1) | Vs (mL·Plant−1) | Vf (mL·Plant−1) | PEfs (%) | PEcs (%) | |
2 December | 301.6 | 248.6 | 307.2 | 23.5 | 21.3 |
8 December | 280.2 | 234.0 | 288.9 | 23.3 | 23.5 |
5 December | 587.1 | 525.9 | 557.5 | 6.0 | 11.6 |
10 December | 492.0 | 446.3 | 486.3 | 9.0 | 10.2 |
11 December | 617.7 | 574.9 | 585.4 | 1.8 | 7.4 |
12 December | 645.1 | 596.7 | 602.8 | 1.0 | 8.1 |
Date | Evaluation Parameter | ||||
---|---|---|---|---|---|
R2 | RMSE (Wm−2) | rRMSE (%) | MAE (Wm−2) | ||
2 December | Hf–Hs | 0.4123 | 57.3 | 47.5 | 37.2 |
Hc–Hs | 0.6535 | 44.0 | 36.4 | 29.9 | |
8 December | Hf–Hs | 0.1153 | 55.5 | 59.6 | 38.6 |
Hc–Hs | 0.7767 | 27.9 | 30.0 | 11.8 | |
5 December | Hf–Hs | 0.9056 | 33.5 | 19.6 | 27.4 |
Hc–Hs | 0.8972 | 34.8 | 20.4 | 28.0 | |
10 December | Hf–Hs | 0.7909 | 43.9 | 31.5 | 34.4 |
Hc–Hs | 0.9393 | 23.7 | 16.7 | 18.5 | |
11 December | Hf–Hs | 0.9630 | 18.1 | 9.8 | 14.3 |
Hc–Hs | 0.6231 | 50.3 | 31.6 | 50.3 | |
12 December | Hf–Hs | 0.9525 | 21.1 | 10.7 | 15.5 |
Hc–Hs | 0.6147 | 51.0 | 30.6 | 51.0 |
Evaluation Parameter | Hf–Hs | Hc–Hs | Evaluation Parameter | Vf–Vs | Vc–Vs |
---|---|---|---|---|---|
R2 | 0.8384 | 0.8084 | R2 | 0.9123 | 0.7598 |
RMSE (Wm−2) | 37.6 | 40.9 | RMSE (mL·plant−1) | 40.4 | 64.8 |
rRMSE (%) | 23.1 | 25.1 | rRMSE (%) | 8.8 | 14.1 |
MAE (Wm−2) | 25.4 | 29.6 | MAE (mL·plant−1) | 31.5 | 58.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhang, T.; Ji, J.; Sun, Z.; Wang, Y.; Sun, Y.; Li, Q. Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter. Sensors 2020, 20, 155. https://doi.org/10.3390/s20010155
Zhang D, Zhang T, Ji J, Sun Z, Wang Y, Sun Y, Li Q. Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter. Sensors. 2020; 20(1):155. https://doi.org/10.3390/s20010155
Chicago/Turabian StyleZhang, Dapeng, Tieyan Zhang, Jianwei Ji, Zhouping Sun, Yonggang Wang, Yitong Sun, and Qingji Li. 2020. "Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter" Sensors 20, no. 1: 155. https://doi.org/10.3390/s20010155
APA StyleZhang, D., Zhang, T., Ji, J., Sun, Z., Wang, Y., Sun, Y., & Li, Q. (2020). Estimation of Solar Radiation for Tomato Water Requirement Calculation in Chinese-Style Solar Greenhouses Based on Least Mean Squares Filter. Sensors, 20(1), 155. https://doi.org/10.3390/s20010155