Ultrasound as a Tool to Study Muscle–Tendon Functions during Locomotion: A Systematic Review of Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. System Designs and Form Factors
3.2. Recording Muscle and Tendon Tissue Dynamics
4. Discussion
4.1. System Designs and Form Factors
- Customization of transmit waveform (open TX operation);
- Access to pre-beamformed raw data (open RX data-sets); and
- Ability to implement real-time imaging.
4.2. Recording Muscle and Tendon Tissue Dynamics
- Mean states recorded at 150 Hz: m, (respectively at 25 Hz: m, );
- Critical states recorded at 250 Hz: m, (respectively at 25 Hz: m, ).
4.3. Bringing Research Demands into System Form Factors
5. Conclusions
- Research studying muscle and tendon functions should aim to record images at frame rates in the kilohertz range.
- Frame rates of at least 150 Hz should be used to reach spatio-temporal resolutions of m. To record tissues at critical states or higher locomotion speeds, frame rates of 250 Hz or more might be necessary to reach the same spatio-temporal resolution.
- The range of view should cover the area of whole muscle and tendon complexes. To record muscle and tendon dynamics sufficiently, we recommend a range of view for US imaging devices of at least 250 mm. This might be substantially larger (700 mm and more) for research on large animals.
- The development of new US imaging solutions in movement science should be driven by the need for more flexibility in parameter settings and access to raw imaging data (open US imaging platforms as defined by Boni et al. [19]).
- The design of a new US system class targeting biomechanical applications must be as unobtrusive as possible in order to avoid interfering with natural movement patterns while simultaneously assuring stable probe fixation to the region of interest.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CM | center-of-mass |
LG | lateral gastrocnemius |
MG | medial gastrocnemius |
MTJ | muscle–tendon junction |
OG | overground |
RF | radio frequency |
RX | receive operation |
SEE | serial elastic element |
SFDF | superficial digital flexor |
SO | soleus |
SSC | stretch–shortening cycle |
TM | treadmill |
TP | tibialis posterior |
TS | triceps surae |
TX | transmit operation |
US | ultrasound |
VL | vastus lateralis |
Appendix A
References
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Alexander, R.M. Energy-saving mechanisms in walking and running. J. Exp. Biol. 1991, 160, 55–69. [Google Scholar]
- Alexander, R.M.; Bennet-Clark, H.C. Storage of elastic strain energy in muscle and other tissues. Nature 1977, 265, 114–117. [Google Scholar] [CrossRef]
- Lichtwark, G.A.; Wilson, A.M. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 2005, 208, 4715–4725. [Google Scholar] [CrossRef]
- Penasso, H.; Thaller, S. Determination of individual knee-extensor properties from leg extensions and parameter identification. Math. Comput. Modell. Dyn. Syst. 2017, 23, 416–438. [Google Scholar] [CrossRef]
- Barber, L.; Carty, C.; Modenese, L.; Walsh, J.; Boyd, R.; Lichtwark, G. Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy. Dev. Med. Child Neurol. 2017, 59, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Bohm, S.; Marzilger, R.; Mersmann, F.; Santuz, A.; Arampatzis, A. Operating length and velocity of human vastus lateralis muscle during walking and running. Sci. Rep. 2018, 8, 5066. [Google Scholar] [CrossRef]
- Lichtwark, G.A.; Wilson, A.M. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J. Exp. Biol. 2006, 209, 4379–4388. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.J.; Marsh, R.L.; Weyand, P.G.; Taylor, C.R. Muscular force in running turkeys: The economy of minimizing work. Science 1997, 275, 1113–1115. [Google Scholar] [CrossRef]
- Dimery, N.J.; Alexander, R.M.; Ker, R.F. Elastic extension of leg tendons in the locomotion of horses (Equus caballus). J. Zool. 1986, 210, 415–425. [Google Scholar] [CrossRef]
- Alexander, R.M.; Maloiy, G.M.O.; Ker, R.F.; Jayes, A.S.; Warui, C.N. The role of tendon elasticity in the locomotion of the camel (Camelus dromedarius). J. Zool. 1982, 198, 293–313. [Google Scholar] [CrossRef]
- Thaller, S.; Penasso, H. Muscle mechanics. In Modelling and Simulation in Sport and Exercise; Routledge: London, UK, 2018; pp. 22–49. [Google Scholar] [CrossRef]
- Hager, P.A. Design of Fully-Digital Medical Ultrasound Imaging Systems. Ph.D. Thesis, ETH, Zürich, Switzerland, 2019. [Google Scholar]
- Lichtwark, G. Ultrasound Technology for Examining the Mechanics of the Muscle, Tendon, and Ligament. In Handbook of Human Motion; Bertram, M., Wolf, S.I., Gert-Peter, B., Zhigang, D., Andrew, M., Freeman, M., Scott, S.W., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–20. [Google Scholar]
- Seynnes, O.R.; Bojsen-Møller, J.; Albracht, K.; Arndt, A.; Cronin, N.J.; Finni, T.; Magnusson, S.P. Ultrasound-based testing of tendon mechanical properties: A critical evaluation. Eur. J. Appl. Physiol. 2015, 118, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Alexander, E.J. Studies of human locomotion: Past, present and future. J. Biomech. 2000, 33, 1217–1224. [Google Scholar] [CrossRef]
- Cronin, N.J.; Lichtwark, G. The use of ultrasound to study muscle–tendon function in human posture and locomotion. Gait Posture 2013, 37, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Boni, E.; Yu, A.C.H.; Freear, S.; Jensen, J.A.; Tortoli, P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1078–1092. [Google Scholar] [CrossRef]
- Suzuki, T.; Ogane, R.; Yaeshima, K.; Kinugasa, R. Forefoot running requires shorter gastrocnemius fascicle length than rearfoot running. J. Sports Sci. 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lichtwark, G.; Bougoulias, K.; Wilson, A. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J. Biomech. 2007, 40, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Cronin, N.J.; Carty, C.P.; Barrett, R.S.; Lichtwark, G. Automatic tracking of medial gastrocnemius fascicle length during human locomotion. J. Appl. Physiol. 2011, 111, 1491–1496. [Google Scholar] [CrossRef]
- Ishikawa, M.; Komi, P.V. The role of the stretch reflex in the gastrocnemius muscle during human locomotion at various speeds. J. Appl. Physiol. 2007, 103, 1030–1036. [Google Scholar] [CrossRef]
- Lai, A.K.M.; Lichtwark, G.A.; Schache, A.G.; Pandy, M.G. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running. Scand. J. Med. Sci. Sports 2018, 28, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, W.; Hoogkamer, W.; Delabastita, T.; Aeles, J.; De Groote, F.; Vanwanseele, B. Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running. Eur. J. Appl. Physiol. 2018, 126, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, J.N.; Cresswell, A.G.; Lichtwark, G.A. The mechanical function of the tibialis posterior muscle and its tendon during locomotion. J. Biomech. 2016, 49, 3238–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronin, N.J.; Hanley, B.; Bissas, A. Mechanical and neural function of triceps surae in elite racewalking. J. Appl. Physiol. 2016, 121, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Nicol, C.; Akiyama, M.; Kunimasa, Y.; Oda, T.; Ito, A.; Locatelli, E.; Komi, P.V.; Ishikawa, M. Can measures of muscle-tendon interaction improve our understanding of the superiority of Kenyan endurance runners? Eur. J. Appl. Physiol. 2015, 115, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Lichtwark, G.A.; Schache, A.G.; Lin, Y.C.; Brown, N.A.T.; Pandy, M.G. In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 2015, 118, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Akiyama, M.; Hoffren-Mikkola, M.; Ito, A.; Komi, P.V.; Ishikawa, M. Age-specific neuromuscular interaction during elderly habitual running. Acta Physiol. 2015, 215, 79–88. [Google Scholar] [CrossRef]
- Cronin, N.J.; Finni, T. Treadmill versus overground and barefoot versus shod comparisons of triceps surae fascicle behaviour in human walking and running. Gait Posture 2013, 38, 528–533. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait. Proc. Natl. Acad. Sci. USA 2012, 109, 977–982. [Google Scholar] [CrossRef]
- Giannakou, E.; Aggeloussis, N.; Arampatzis, A. Reproducibility of gastrocnemius medialis muscle architecture during treadmill running. J. Electromyogr. Kinesiol. 2011, 21, 1081–1086. [Google Scholar] [CrossRef]
- Ishikawa, M.; Pakaslahti, J.; Komi, P. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 2007, 25, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Pandy, M.G.; Andriacchi, T.P. Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 2010, 12, 401–433. [Google Scholar] [CrossRef] [PubMed]
- Hamner, S.R.; Delp, S.L. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 2013, 46, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.G.; Sumner, B.J.; Kram, R. Muscle contributions to propulsion and braking during walking and running: Insight from external force perturbations. Gait Posture 2014, 40, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, D.; Hull, M. A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J. Biomech. 1990, 23, 487–494. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.; Loan, J.; Hoy, M.; Zajac, F.; Topp, E.; Rosen, J. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef]
- Lewis, G.S.; Kirby, K.A.; Piazza, S.J. Determination of subtalar joint axis location by restriction of talocrural joint motion. Gait Posture 2007, 25, 63–69. [Google Scholar] [CrossRef]
- Arnold, E.M.; Ward, S.R.; Lieber, R.L.; Delp, S.L. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 2010, 38, 269–279. [Google Scholar] [CrossRef]
- Hamner, S.R.; Seth, A.; Delp, S.L. Muscle contributions to propulsion and support during running. J. Biomech. 2010, 43, 2709–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorn, T.W.; Schache, A.G.; Pandy, M.G. Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 2012, 215, 1944–1956. [Google Scholar] [CrossRef]
- Grieve, D.W.; Pheasant, S.; Cavanagh, P. Prediction of gastrocnemius length from knee and ankle joint posture. Biomechanics 1978, VI-A, 405–412. [Google Scholar]
- Fukunaga, T.; Kubo, K.; Kawakami, Y.; Fukashiro, S.; Kanehisa, H.; Maganaris, C.N. In vivo behaviour of human muscle tendon during walking. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.V. The Heat of Shortening and the Dynamic Constants of Muscle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1938, 126, 136–195. [Google Scholar] [CrossRef]
- Gordon, A.M.; Huxley, A.F.; Julian, F.J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 1966, 184, 170–192. [Google Scholar] [CrossRef]
- Raiteri, B.J.; Cresswell, A.G.; Lichtwark, G.A. Muscle-tendon length and force affect human tibialis anterior central aponeurosis stiffness in vivo. Proc. Natl. Acad. Sci. USA 2018, 115, E3097–E3105. [Google Scholar] [CrossRef]
- Herzog, W. The mysteries of eccentric muscle action. J. Sport Health Sci. 2018, 7, 253–254. [Google Scholar] [CrossRef]
- Herzog, W.; Leonard, T.R. Force enhancement following stretching of skeletal muscle: A new mechanism. J. Exp. Biol. 2002, 205, 1275–1283. [Google Scholar]
- Penasso, H.; Thaller, S. Model-based analysis of fatigued human knee extensors. Eur. J. Appl. Physiol. 2018, 118, 1447–1461. [Google Scholar] [CrossRef] [Green Version]
- Nuri, L.; Obst, S.J.; Newsham-West, R.; Barrett, R.S. Regional three-dimensional deformation of human Achilles tendon during conditioning. Scand. J. Med. Sci. Sports 2017, 27, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Penasso, H. The Effect of Fatigue on Identified Human Neuromuscular Parameters. Ph.D. Thesis, University of Graz, Graz, Austria, 2018. [Google Scholar]
- Ahmad, H.N.; Barbosa, T.M. The effects of backpack carriage on gait kinematics and kinetics of schoolchildren. Sci. Rep. 2019, 9, 3364. [Google Scholar] [CrossRef] [PubMed]
- Benini, L.; Farella, E.; Guiducci, C. Wireless sensor networks: Enabling technology for ambient intelligence. Microelectron. J. 2006, 37, 1639–1649. [Google Scholar] [CrossRef]
- Loram, I.D.; Maganaris, C.N.; Lakie, M. Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J. Appl. Physiol. 2006, 100, 1311–1323. [Google Scholar] [CrossRef]
- Pandy, M.G.; Zajac, F.E.; Sim, E.; Levine, W.S. An optimal control model for maximum-height human jumping. J. Biomech. 1990, 23, 1185–1198. [Google Scholar] [CrossRef]
- Kawakami, Y.; Ichinose, Y.; Fukunaga, T. Architectural and functional features of human triceps surae muscles during contraction. J. Appl. Physiol. 1998, 85, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Rome, K.; McNair, P. Management of Chronic Conditions in the Foot and Lower Leg; Churchill Livingstone: London, UK, 2015; p. 259. [Google Scholar] [CrossRef]
- Tanter, M.; Bercoff, J.; Sandrin, L.; Fink, M. Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1363–1374. [Google Scholar] [CrossRef]
- Wang, S.; Lee, W.N.; Provost, J.; Luo, J.; Konofagou, E. A composite high-frame-rate system for clinical cardiovascular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2221–2233. [Google Scholar] [CrossRef]
- Papadacci, C.; Pernot, M.; Couade, M.; Fink, M.; Tanter, M. High-contrast ultrafast imaging of the heart. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 288–301. [Google Scholar] [CrossRef]
- Couade, M.; Pernot, M.; Tanter, M.; Messas, E.; Bel, A.; Ba, M.; Hagege, A.A.; Fink, M. Ultrafast imaging of the heart using circular wave synthetic imaging with phased arrays. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 515–518. [Google Scholar] [CrossRef]
- Deffieux, T.; Gennisson, J.L.; Tanter, M.; Fink, M.; Nordez, A. Ultrafast imaging of in vivo muscle contraction using ultrasound. Appl. Phys. Lett. 2006, 89, 184107. [Google Scholar] [CrossRef]
- Tanter, M.; Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Boni, E.; Bassi, L.; Dallai, A.; Meacci, V.; Ramalli, A.; Scaringella, M.; Guidi, F.; Ricci, S.; Tortoli, P. A real-time beamformer for high frame rate ultrasound imaging. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Song, M.H.; Godøy, R.I. How fast is your body motion? Determining a sufficient frame rate for an optical motion tracking system using passive markers. PLoS ONE 2016, 11, e0150993. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A.; Nikolov, S.I.; Gammelmark, K.L.; Pedersen, M.H. Synthetic aperture ultrasound imaging. Ultrasonics 2006, 44, e5–e15. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A.; Holten-Lund, H.; Nilsson, R.T.; Hansen, M.; Larsen, U.D.; Domsten, R.P.; Tomov, B.G.; Stuart, M.B.; Nikolov, S.I.; Pihl, M.J.; et al. SARUS: A synthetic aperture real-time ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1838–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boni, E.; Bassi, L.; Dallai, A.; Guidi, F.; Meacci, V.; Ramalli, A.; Ricci, S.; Tortoli, P. ULA-OP 256: A 256-channel open scanner for development and real-time implementation of new ultrasound methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Hager, P.A.; Speicher, D.; Degel, C.; Benini, L. UltraLight: An ultrafast imaging platform based on a digital 64-channel ultrasound probe. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Hager, P.A.; Risser, C.; Weber, P.K.; Benini, L. LightProbe: A 64-channel programmable ultrasound transducer head with an integrated front-end and a 26.4 Gb/s optical link. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
Study | US System | US Transducer | Arrangement | Mounting | Center Frequency (MHz) | Frame Rate (Hz) |
---|---|---|---|---|---|---|
Suzuki 2019 [20] | ProSound 7 | 60 mm, linear array (UST-5712) | double | scratch-build fixture, | 7.5 | 110 |
Hitachi-Aloka (Tokyo, JP) | 50 mm, linear array (UST-567) | transmission gel, bandage | ||||
Lai 2018 [24] | Echo Blaster 128 | 60 mm, linear array, | single | - | 7 | 80 |
Telemed (Vilnius, LT) | 96 channels | |||||
Bohm 2018 [7] | MyLab60 | 100 mm, linear array (LA923) | single | neoprene plastic cast, | 10 | 43 |
Esaote (Genova, IT) | 192 channels | elastic straps | ||||
Swinnen 2018 [25] | Echo Blaster 128 CEXT | 60 mm, linear array | single | tape, elastic bandage | 8 | 86 |
Telemed (Vilnius, LT) | (LV7.5/60/128Z-2) | |||||
Maharaj 2016 [26] | Echo Blaster 128 UAB | 96 channels | single | plastic mould, bandage | 6 | 80 |
Telemed (Vilnius, LT) | (LV7.5/60/96) | |||||
Cronin 2016 [27] | Acuson P300 | 50 mm | single | elastic bandage | 7.5 | 42 |
Siemens (Erlangen, DE) | ||||||
Sano 2015a [28] | ProSound: C3cv/10 | 40 mm/60 mm, linear array | single | custom-made Styrofoam cast | 13 | 58/65 |
Hitachi-Aloka (Tokyo, JP) | 20–30 g | |||||
Lai 2015 [29] | Echo Blaster 128 | 60 mm, linear array, | single | self-adhesive bandage | 7 | 80 |
Telemed (Vilnius, LT) | 96 channels | |||||
Sano 2015b [30] | ProSound 10 | 60 mm, linear array | single | custom-made support device | 13 | 117 |
Hitachi-Aloka (Tokyo, JP) | custom-made, 180 g | |||||
Cronin 2013 [31] | Echo Blaster 128 | 60 mm, linear array | single | US-system in backpack (5 kg), | 7 | 80 |
Telemed (Vilnius, LT) | 96 channels | compressive bandage | ||||
Farris 2012 [32] | - | linear array | single | - | 8 | 50 |
Telemed (Vilnius, LT) | (LV7.5/60/96Z) | |||||
Giannakou 2011 [33] | SSD-4000 | 42 mm, linear array | single | lightweight foam fixation, | 7.5 | 43 |
Hitachi-Aloka (Tokyo, JP) | hook-and-loop straps, elastic bandage | |||||
Cronin 2011 [22] | Echo Blaster 128 | 60 mm, linear array | single | compressive bandage | 7 | 80 |
Telemed (Vilnius, LT) | 96 channels | |||||
Lichtwark 2007 [21] | Echo Blaster 128 UAB | 60 mm, linear array | single | bandage | 7 | 25 |
Telemed (Vilnius, LT) | 128 channels | Coban (3M, St. Paul, MN, USA) | ||||
Ishikawa 2007a [23] | SSD-5500m and Prosound 10 | 60 mm, linear array | single | polystyrene supporting | 10 | 96–196 |
Hitachi-Aloka (Tokyo, JP) | device (130 g incl. probe-end) | |||||
Ishikawa 2007b [34] | SSD-5500 | 60 mm, linear array | single | - | 7.5 | 96 |
Hitachi-Aloka (Tokyo, JP) | ||||||
Lichtwark 2006 [8] | Echo Blaster 128 UAB | 60 mm, linear array | single | bandage | 7 | 25 |
Telemed (Vilnius, LT) | 128 channels |
Study | No. Subj. | Locomotion Speed | Phase | Fascicle | t (s) | Ltis (m) | vtisMean (m/s) | dpft (m) | fpt (-) (fps (Hz)) |
---|---|---|---|---|---|---|---|---|---|
Ishikawa 2007a [23] | 8 | 6.5 m/s | stance | MG | 14 (96) | ||||
TM run | 25 (169) | ||||||||
Suzuki 2019 [20] | 7 | 5 m/s | stance | MG | 17 (110) | ||||
TM run, forefoot strike | |||||||||
Swinnen 2018 [25] | 19 | m/s | stance | MG | - | 19 (86) | |||
TM run, rearfoot strike | |||||||||
Sano 2015a [28] | 22 | 3.86 m/s | stance | MG | 11 (58) | ||||
TM run | 12 (65) | ||||||||
Cronin 2016 [27] | 11 | m/s | stance | SO | - | 4 (42) | |||
TM run | MG | 2 (42) | |||||||
Cronin 2013 [31] | 10 | m/s | stance | SO | 20 (80) | ||||
OG run , barefoot | MG | 20 (80) | |||||||
Lichtwark 2006 [8] | 6 | m/s | stance | MG | 7 (25) | ||||
TM run, incline | |||||||||
Ishikawa 2007b [34] | 7 | m/s | stance | MG | 28 (96) | ||||
OG run | |||||||||
Lichtwark 2007 [21] | 6 | 2.08 m/s | stance | MG | 7 (25) | ||||
TM run | |||||||||
Farris 2012 [32] | 10 | 3.25 m/s | stride | MG | - | 23 (50) | |||
TM run |
Study | No. Subj. | Locomotion Speed | Phase | Fascicle | t (s) | Ltis (m) | vtisMean (m/s) | dpft (m) | fpt (-) (fps (Hz)) |
---|---|---|---|---|---|---|---|---|---|
Lai 2018 [24] | 10 | stance | SO | - | 2 (80) | ||||
5 m/s | (ankle moment | MG | 2 (80) | ||||||
TM run | decline) | LG | 3 (80) | ||||||
Swinnen 2018 [25] | 19 | m/s | stance | MG | - | - | - (86) | ||
TM run, rearfoot strike | (0%–30%) | ||||||||
Sano 2015a [28] | 22 | 3.86 m/s | stance | MG | 5 (58) | ||||
TM run | (push off) | 6 (65) | |||||||
Bohm 2018 [7] | 30 | 3 m/s | stance | VL | 5 (43) | ||||
TM run | (active state) | ||||||||
Lichtwark 2007 [21] | 6 | 2.08 m/s | swing phase | MG | 2 (25) | ||||
TM run | t = 0.6–0.68 s (medial) | ||||||||
Maharaj 2016 [26] | 15 | m/s | stance | TP | - | 12 (80) | |||
TM walk, barefoot | (late) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitner, C.; Hager, P.A.; Penasso, H.; Tilp, M.; Benini, L.; Peham, C.; Baumgartner, C. Ultrasound as a Tool to Study Muscle–Tendon Functions during Locomotion: A Systematic Review of Applications. Sensors 2019, 19, 4316. https://doi.org/10.3390/s19194316
Leitner C, Hager PA, Penasso H, Tilp M, Benini L, Peham C, Baumgartner C. Ultrasound as a Tool to Study Muscle–Tendon Functions during Locomotion: A Systematic Review of Applications. Sensors. 2019; 19(19):4316. https://doi.org/10.3390/s19194316
Chicago/Turabian StyleLeitner, Christoph, Pascal A. Hager, Harald Penasso, Markus Tilp, Luca Benini, Christian Peham, and Christian Baumgartner. 2019. "Ultrasound as a Tool to Study Muscle–Tendon Functions during Locomotion: A Systematic Review of Applications" Sensors 19, no. 19: 4316. https://doi.org/10.3390/s19194316