The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification
Abstract
:1. Introduction
2. Instrument Description
2.1. Basic Principle of The Visible and Near-IR Imaging Spectrometer (VNIS)
2.2. Optical Design of the SWIR Channel
2.3. The Information Link of Infrared Channel
3. Signal Flow Model Simulation and Testing
3.1. The Signal Acquisition Model of Infrared Spectral
- ➢
- E = 217 W/m2/μ[email protected] μm;
- ➢
- A = 1 mm2;
- ➢
- F#: 2.8;
- ➢
- τ0 = [email protected] μm;
- ➢
- Δλ = 8 [email protected] μm;
- ➢
- Rλ = 1.2 A/[email protected] μm;
- ➢
- θ= 15°;
- ➢
- ρ = [email protected] μm;
- ➢
- B = 1.61 W/m2/μm/[email protected] μm.
3.2. Laboratory Testing and Evaluation
4. In-Flight Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Liu, D.; Liu, B.; Ren, X.; Liu, J.; He, Z.; Zuo, W.; Zeng, X.; Xu, R.; Tan, X.; et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 2019, 569, 378–382. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, C.; Xu, R.; Lv, G.; Yuan, L.; Wang, J. Spectrometers based on acousto-optic tunable filter for in-situ lunar surface measurement. J. Appl. Remote Sens. 2019, 13, 027502. [Google Scholar] [CrossRef]
- Dai, S.W.; Wu, J.; Sun, H.X.; Zhang, B.M.; Yang, J.F.; Fang, G.Y.; Wang, J.Y.; Wang, H.Y.; An, J.S. Chang’E-3 Lunar Rover’s Scientific Payloads. Chin. J. Space Sci. 2014, 34, 332–340. [Google Scholar]
- Korablev, O.; Bertaux, J.-L.; Grigoriev, A.; Dimarellis, E.; Kalinnikov, Y.; Rodin, A.; Muller, C.; Fonteyn, D. An AOTF-based spectrometer for the studies of Mars atmosphere for Mars Express ESA mission. Adv. Space Res. 2002, 29, 143–150. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Korablev, O.; Perrier, S.; Quemerais, E.; Montmessin, F.; Leblanc, F.; Lebonnois, S.; Rannou, P.; Lefèvre, F.; Forget, F.; et al. SPICAM on Mars Express: Observing Modes and Overview of UV Spectrometer Data and Scientific Results. J. Geophys. Res. 2006, 111, E10. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Nevejans, D.; Korablev, O.; Villard, E.; Quémerais, E.; Neefs, E.; Montmessin, F.; Leblanc, F.; Dubois, J.P.; Dimarellis, E.; et al. SPICAV on Venus Express: Three Spectrometers to Study the Global Structure and Composition of the Venus Atmosphere. Planet. Space Sci. 2007, 55, 1673–1700. [Google Scholar] [CrossRef]
- Glenar, D.A.; Blaney, D.L.; Hillman, J.J. AIMS: Acousto-optic Imaging Spectrometer for Spectral Mapping of Solid Surfaces. Acta Astronaut. 2003, 52, 389–396. [Google Scholar] [CrossRef]
- He, Z.P.; Wang, B.Y.; Lv, G.; Li, C.L.; Yuan, L.Y.; Xu, R.; Chen, K.; Wang, J.Y. Visible and Near-Infrared Imaging Spectrometer (VNIS) and Its Preliminary Results from the Chang’E 3 Project. Rev. Sci. Instrum. 2014, 86, 8. [Google Scholar]
- He, Z.P.; Wang, B.Y.; Lü, G.; Li, C.L.; Yuan, L.Y.; Xu, R.; Liu, B.; Chen, K.; Wang, J.Y. Operating principles and detection characteristics of Visible and Near-Infrared Imaging Spectrometer (VNIS) in Chang’e 3. Res. Astron. Astrophys. 2014, 14, 1567. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Shu, R.; Xu, R.; Chen, K.; Li, C. Visible and Near-infrared Imaging Spectrometer aboard Chinese Chang’E-3 Spacecraft. Chapter 5; In Optical Payloads for Space Missions; Qian, S.-E., Ed.; John Wiley & Sons: Chichester, UK, 2016. [Google Scholar]
- Yuan, L.; He, Z.; Lv, G.; Wang, Y.; Li, C.; Wang, J. Optical design, laboratory test, and calibration of airborne long wave infrared imaging Spectrometer. Opt. Express 2017, 25, 22440–22454. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, B.; Lv, G.; Li, C.; Yuan, L.; Xu, R.; Chen, K.; Wang, J. Visible and Near-infrared Imaging Spectrometer (VNIS) for Chang’E-3. Proc. SPIE 2014, 9263, 92630D-1. [Google Scholar]
- Liu, B.; Liu, J.Z.; Zhang, G.L.; Ling, Z.C.; Zhang, J.; He, Z.P.; Yang, B.Y.; Zou, Y.L. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang’E-3 lunar rover: Based on ground validation experiment data. Res. Astron. Astrophys. 2013, 13, 862. [Google Scholar] [CrossRef]
- Wang, J.Y.; Shu, R.; Liu, Y.N.; Ma, Y.H. Introduction of Imaging Spectral Technology; Science Press: Beijing, China, 2011. [Google Scholar]
- Xu, R.; He, Z.P.; Zhang, H.; Ma, Y.H.; Fu, Z.Q.; Wang, J.Y. Calibration of imaging spectrometer based on acousto-optic tunable filter (AOTF). Proc. SPIE 2012, 8527, 85270S. [Google Scholar]
- He, Z.; Wang, B.; Lv, G.; Li, C.; Yuan, L.; Xu, R.; Chen, K.; Wang, J. Visible and Near-infrared Imaging Spectrometer (VNIS) for In-situ Lunar Surface Measurement. Proc. SPIE 2015, 9639, 96391S. [Google Scholar]
Description | Specification | |
---|---|---|
VIS/NIR | SWIR | |
Spectral range (nm) | 450–950 | 900–2400 |
Spectral resolution (nm) | 2–10 | 3–12 |
Number of bands | 100 | 300 |
Field of view (°) | 8.5 × 8.5 | ф 3.58 |
Number of valid pixels | ≥256 × 256 | 1 |
Quantized value (bit) | 10 | 16 |
S/N ratio (dB) | ≥43 (maximum SNR) ≥33 (albedo 0.09, solar elevation angle 45°) | ≥46 (maximum SNR) ≥31 (albedo 0.09, solar elevation angle 15°) |
RF ranges (Mhz) | High frequency(F-H): 113.5–177.2 (400–632 nm) Low frequency(F-L): 71.9–113.5 (632–900 nm) | High frequency (F-H): 69.65–117.7 (900–1380 nm) Low frequency (F-L): 42.6–69.65 (1380–2400 nm) |
Modulation frequency (Hz) | -- | 500 |
Integration time (ms) | 18.2–256 (adjustable) | -- |
Detection range (m) | 0.7–1.3 | |
Measurement time (min) | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, Z.; Xu, R.; Lv, G.; Yuan, L.; He, Z.; Wang, J. The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification. Sensors 2019, 19, 2806. https://doi.org/10.3390/s19122806
Li C, Wang Z, Xu R, Lv G, Yuan L, He Z, Wang J. The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification. Sensors. 2019; 19(12):2806. https://doi.org/10.3390/s19122806
Chicago/Turabian StyleLi, Chunlai, Zhendong Wang, Rui Xu, Gang Lv, Liyin Yuan, Zhiping He, and Jianyu Wang. 2019. "The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification" Sensors 19, no. 12: 2806. https://doi.org/10.3390/s19122806