A Plant Leaf Geometric Parameter Measurement System Based on the Android Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring Device
2.2. Experimental Methods
2.2.1. Measurement of Rule Graphics
2.2.2. Measurement of the Leaf
2.2.3. Different Mobile Tests
2.3. Implementation of the Software
2.3.1. System Software Platform
2.3.2. Image acquisition and processing
2.3.3. Image Geometry Calibration
2.4. Analyses of Leaf Parameters
2.4.1. Positive Circumscribed Rectangle of Leaf
2.4.2. Calculation of Leaf Length and Width
2.4.3. Calculation of Leaf Area and Perimeter
3. Results
3.1. Distance Tests of Rule Graphics
3.2. Angle Tests of Regular Images
3.3. Lab Leaf Tests
3.4. Outdoor Leaf Tests
3.5. Different Mobile Tests
4. Discussion
4.1. Effects of Test Distance on Geometric Parameters of Regular Images
4.2. Effects of Test Angle on Geometric Parameters of Regular Images
4.3. The Relationship between the Measured Values of the Leaf geometric Parameters and the True Values from Lab Measurements
4.4. The Relationship between the Measured Values of the Leaf Geometric Parameters and the True Values from Outdoor Measurements
4.5. The Relationship between the Measured Values of Different Mobile Phones
4.6. Comparisons with Commercial Area Meters
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; et al. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol. 2011, 190, 724–739. [Google Scholar] [CrossRef]
- Costa, A.; Pôças, I.; Cunha, M. Estimating the Leaf Area of Cut Roses in Different Growth Stages Using Image Processing and Allometrics. Horticulturae 2016, 2, 6. [Google Scholar] [CrossRef]
- Igathinathane, C.; Prakash, V.S.S.; Padma, U.; Babu, G.R.; Womac, A.R. Interactive computer software development for leaf area measurement. Comput. Electron. Agric. 2006, 51, 1–16. [Google Scholar] [CrossRef]
- Serdar, Ü.; Demirsoy, H. Non-destructive leaf area estimation in chestnut. Sci. Hortic. 2006, 108, 227–230. [Google Scholar] [CrossRef]
- Engin, D.; Engin, M. Design of a Plant Leaf Area Meter Using PV Cell and Embedded Microcontroller. Adv. Mater. Sci. Eng. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Qu, B.; Tao, P.; Other, A.N. Expert diagnosis system design of apply diseases and pests based on Android phone. Northern Hortic. 2015, 19, 202–205. [Google Scholar]
- Gong, A.; Yu, J.; He, Y.; Qiu, Z. Citrus yield estimation based on images processed by an android mobile phone. Biosyst Eng. 2013, 115, 162–170. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Ma, L.-H.; Cheung, Y.-m.; Wu, X.; Tang, Y.; Chen, C.L.P. ApLeaf: An efficient android-based plant leaf identification system. Neurocomputing 2015, 151, 1112–1119. [Google Scholar] [CrossRef]
- Gong, A.; Wu, W.; Qiu, Z. Leaf area measurement method based on Android system mobile phone. J. Agric. Mach. 2013, 44, 203–208. (In Chinese) [Google Scholar]
- Guo, W.; Zhou, C.; Han, W. Rapid and non-destructive measurement system of plant leaf area based on Android mobile phone. J. Agric. Mach. 2014, 45, 275–280. (In Chinese) [Google Scholar]
- Gong, A.; Wu, X.; Qiu, Z.; He, Y. A handheld device for leaf area measurement. Comput. Electron. Agric. 2013, 98, 74–80. [Google Scholar] [CrossRef]
- Itakura, K.; Hosoi, F. Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images. Sensors 2018, 18, 3576. [Google Scholar] [CrossRef]
- Senthilkumaran, N.; Vaithegi, S. Image Segmentation By Using Thresholding Techniques For Medical Images. Comput. Sci. Eng. Int. J. 2016, 6, 1–13. [Google Scholar]
- Singh, D.; Singh Brar, A.; Din, S.; Kaur, G. Scanner Image Analysis to Estimate Leaf Area. Int. J. Comput. Appl. 2014, 107, 5–10. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Radzali, M.H.; Kamal, N.A.M.; Diah, N.M. Measuring leaf area using Otsu segmentation method (LAMOS). Ind. J. Sci. Technol. 2016, 9, 1–6. [Google Scholar]
- Seo, J.; Chae, S.; Shim, J.; Kim, D.; Cheong, C.; Han, T.D. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors. Sensors 2016, 16, 353. [Google Scholar] [CrossRef]
- Zhou, F.; Cui, Y.; Liu, L.; Gao, H. Distortion correction using a single image based on projective invariability and separate model. Optik Int. J. Light Electron Opt. 2013, 124, 3125–3130. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, B.; Liu, W.; Sun, Y. An improved image acquiring method for machine vision measurement of hot formed parts. J. Mater. Process. Technol. 2010, 210, 267–271. [Google Scholar] [CrossRef]
- Baker, B.; Olszyk, D.M.; Tingey, D. Digital Image Analysis to Estimate Leaf Area. J. Plant Physiol. 1996, 148, 530–535. [Google Scholar] [CrossRef]
- Diago, M.P.; Correa, C.; Millan, B.; Barreiro, P.; Valero, C.; Tardaguila, J. Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions. Sensors 2012, 12, 16988–17006. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.-z.; Kirk, K.R.; Greene, J.K. Estimation of soybean leaf area, edge, and defoliation using color image analysis. Comput. Electron. Agric. 2018, 150, 41–51. [Google Scholar] [CrossRef]
- Roberts, S.D.; Dean, T.J.; Evans, D.L.; McCombs, J.W.; Harrington, R.L.; Glass, P.A. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. For. Ecol. Manag. 2005, 213, 54–70. [Google Scholar] [CrossRef]
- Hinnah, F.D.; Heldwein, A.B.; Maldaner, I.C.; Loose, L.H.; Lucas, D.D.P.; Bortoluzzi, M.P. Estimativa da área foliar da berinjela em função das dimensões foliares. Bragantia 2014, 73, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, Y.; Li, F.; Jin, G. Non-destructively predicting leaf area, leaf mass and specific leaf area based on a linear mixed-effect model for broadleaf species. Ecol. Indic. 2017, 78, 340–350. [Google Scholar] [CrossRef]
- Kucukkaya, A.G. Photogrammetry and remote sensing in archeology. J. Quant. Spectrosc. Radiat. Transf. 2004, 88, 83–88. [Google Scholar] [CrossRef]
- Richter, G.L.; Zanon Júnior, A.; Streck, N.A.; Guedes, J.V.C.; Kräulich, B.; da Rocha, T.S.M.; Winck, J.E.M.; Cera, J.C. Estimativa da área de folhas de cultivares antigas e modernas de soja por método não destrutivo. Bragantia 2014, 73, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Singh, H. A Simple, Cost-Effective Method for Leaf Area Estimation. J. Bot. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tech, A.R.B.; da Silva, A.L.C.; Meira, L.A.; de Oliveira, M.E.; Pereira, L.E.T. Methods of image acquisition and software development for leaf area measurements in pastures. Comput. Electron. Agric. 2018, 153, 278–284. [Google Scholar] [CrossRef]
- Lu, M. Research of the improved parallel line detection algorithm based on Hough transform. Microcomput. Its Appl. 2010, 29, 27–29. (In Chinese) [Google Scholar]
- Kälviäinen, H.; Hirvonen, P.; Oja, E. Hough tool-A software package for the use of the Hough transform. Pattern Recogn. Lett. 1996, 17, 889–897. [Google Scholar] [CrossRef]
- Atiquzzaman, M.; Akhtar, M.W. Complete line segment description using the Hough transform. Image Vis. Comput. 1994, 12, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Caldas, L.S.; Bravo, C.; Piccolo, H. Measurement of leaf area with a hand-scanner linked to a microcomputer. Revista Brasileira de Fisiologia Vegetal 1992, 4, 17–20. [Google Scholar]
- Han, D. Influence of edge shadow and halo on image leaf area measurement and correction. For. Resour. Manag. 2010, 3, 98–103. (In Chinese) [Google Scholar]
- Bradshaw, J.D.; Rice, M.E.; Hill, J.H. Digital analysis of leaf surface area: Effects of shape, resolution, and size. J. Kansas Entomol. Soc. 2007, 80, 339–347. [Google Scholar] [CrossRef]
Number | Phone model | CPU | Resolution | Android version |
---|---|---|---|---|
1 | HUAWEI nova2s | Qualcomm snapdragon 855 | 4608 × 3456 | 8.0 |
2 | Millet 6 | Qualcomm snapdragon 845 | 4032 × 3016 | 8.1 |
3 | Vivo Y67 | Qualcomm snapdragon 855 | 4160 × 3120 | 6.0 |
4 | HUAWEI nova1 | Qualcomm snapdragon 625 | 3264 × 2248 | 7.0 |
Geometry | Length (cm) | Width (cm) | Area (cm2) | Perimeter (cm) |
---|---|---|---|---|
Square | 5.00 | 5.00 | 25.00 | 20.00 |
Rectangle | 6.00 | 4.00 | 24.00 | 20.00 |
Circle | 6.00 | 6.00 | 28.27 | 18.85 |
Triangle | 6.00 | 6.00 | 18.00 | 19.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ma, X.; Tao, M.; Deng, R.; Bangura, K.; Deng, X.; Liu, C.; Qi, L. A Plant Leaf Geometric Parameter Measurement System Based on the Android Platform. Sensors 2019, 19, 1872. https://doi.org/10.3390/s19081872
Liu H, Ma X, Tao M, Deng R, Bangura K, Deng X, Liu C, Qi L. A Plant Leaf Geometric Parameter Measurement System Based on the Android Platform. Sensors. 2019; 19(8):1872. https://doi.org/10.3390/s19081872
Chicago/Turabian StyleLiu, Haiyun, Xu Ma, Ming Tao, Ruoling Deng, Kemoh Bangura, Xiangwu Deng, Chuang Liu, and Long Qi. 2019. "A Plant Leaf Geometric Parameter Measurement System Based on the Android Platform" Sensors 19, no. 8: 1872. https://doi.org/10.3390/s19081872
APA StyleLiu, H., Ma, X., Tao, M., Deng, R., Bangura, K., Deng, X., Liu, C., & Qi, L. (2019). A Plant Leaf Geometric Parameter Measurement System Based on the Android Platform. Sensors, 19(8), 1872. https://doi.org/10.3390/s19081872