Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review
Abstract
:1. Introduction
2. Partial Discharge Detection Methods
3. UHF Sensors in Partial Discharge Detection
3.1. Sensor Classification and Installation
3.2. Sensor Design
3.2.1. Monopole Antennas
3.2.2. Micro-Strip Antenna
3.2.3. Fractal Antenna
3.2.4. Ultra-Wideband Antenna
3.3. Sensor Optimization
3.3.1. Directivity (Radiation Pattern)
3.3.2. Size
3.3.3. Gain
3.3.4. Input Impedance
3.3.5. Impedance Matching Parameters
3.3.6. Frequency Bandwidth
3.3.7. Surface Current Distribution
3.3.8. Operating Environment and Reliability
3.4. Sensitivity Check and Calibration
4. Effect on UHF Signal Propagation in a Power Transformer
4.1. Effect of the Insulation Material
4.2. Effect of the Transformer Tank
4.3. Effect of Internal Barriers
4.4. Effect of Bushing Installation
4.5. Effect of Other Structure
5. Partial Discharge Localization by UHF Sensor Array
6. Challenges and Future Development
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riera-Guasp, M.; Antonino-Daviu, J.A.; Capolino, G.A. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art. IEEE Trans. Ind. Electron. 2015, 62, 1746–1759. [Google Scholar] [CrossRef]
- Stone, G. A perspective on online partial discharge monitoring for assessment of the condition of rotating machine stator winding insulation. IEEE Electr. Insul. Mag. 2012, 28, 8–13. [Google Scholar] [CrossRef]
- Wu, M.; Cao, H.; Cao, J.; Nguyen, H.L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag. 2015, 31, 22–35. [Google Scholar] [CrossRef]
- Phung, B.T.; Blackburn, T.R.; Liu, Z. Acoustic measurements of partial discharge signals. J. Electr. Electron. Eng. Aust. 2001, 21, 41. [Google Scholar]
- Descoeudres, A.; Hollenstein, C.; Demellayer, R.; Wälder, G. Optical emission spectroscopy of electrical discharge machining plasma. J. Mater. Process. Technol. 2004, 149, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Koley, C.; Chatterjee, B.; Chakravorti, S. A methodology for identification and localization of partial discharge sources using optical sensors. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 18–28. [Google Scholar] [CrossRef]
- Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef]
- Hoshino, T.; Koyama, H.; Maruyama, S.; Hanai, M. Comparison of sensitivity between UHF method and IEC 60270 for onsite calibration in various GIS. IEEE Trans. Power Deliv. 2006, 21, 1948–1953. [Google Scholar] [CrossRef]
- Tenbohlen, S.; Denissov, D.; Hoek, S.; Markalous, S.M. Partial discharge measurement in the ultra high frequency (UHF) range. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1544–1552. [Google Scholar] [CrossRef]
- Rostaminia, R.; Saniei, M.; Vakilian, M.; Mortazavi, S.S. Evaluation of transformer core contribution to partial discharge electromagnetic waves propagation. Int. J. Electr. Power Energy Syst. 2016, 83, 40–48. [Google Scholar] [CrossRef]
- Hampton, B.F.; Meats, R.J. Diagnostic measurements at UHF in gas insulated substations. Gener. Trans. Distrib. IEE Proceed. C 1988, 135, 137–145. [Google Scholar] [CrossRef]
- Rutgers, W.R.; Fu, Y.H. UHF PD-detection in a Power Transformer. In Proceedings of the 10th International Symposium on High Voltage Engineering (ISH), Montreal, QC, Canada, 25–29 August 1997; pp. 219–222. [Google Scholar]
- Ahmed, N.H.; Srinivas, N.N. On-line partial discharge detection in cables. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 181–188. [Google Scholar] [CrossRef]
- Mondal, M.; Kumbhar, G.B. Detection, Measurement, and Classification of Partial Discharge in a Power Transformer: Methods, Trends, and Future Research. IETE Tech. Rev. 2018, 35, 483–493. [Google Scholar] [CrossRef]
- Mondal, M.; Kumbhar, G.B. Partial discharge localization in a power transformer: Methods, trends, and future research. IETE Tech. Rev. 2017, 34, 504–513. [Google Scholar] [CrossRef]
- Jahangir, H.; Akbari, A.; Werle, P.; Szczechowski, J. UHF PD measurements on power transformers-advantages and limitations. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3933–3940. [Google Scholar] [CrossRef]
- Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M.; Ardila-Rey, J.A.; Parrado-Hernández, E. Partial Discharge Spectral Characterization in HF, VHF and UHF Bands Using Particle Swarm Optimization. Sensors 2018, 18, 746. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, C.; Wang, Q.; Wang, Z.; Yin, Y. Processing of partial discharge ultra-high frequency signals from a true size transformer. In Proceedings of the IEEE International Conference on Solid Dielectrics, ICSD 2013, Bologna, Italy, 30 June–4 July 2013; pp. 1012–1015. [Google Scholar] [CrossRef]
- Judd, M.D.; Li, Y.; Hunter, I.B.B. Partial Discharge Monitoring for Power Transformers Using UHF Sensors Part 1: Sensors and Signal Interpretation. IEEE Electr. Insul. Mag. 2005, 21, 5–14. [Google Scholar] [CrossRef]
- Li, Z.; Luo, L.; Liu, Y.; Sheng, G.; Jiang, X. UHF partial discharge localization algorithm based on compressed sensing. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 21–29. [Google Scholar] [CrossRef]
- Li, Z.; Luo, L.; Sheng, G.; Liu, Y.; Jiang, X. UHF partial discharge localisation method in substation based on dimension-reduced RSSI fingerprint. IET Gener. Trans. Distrib. 2018, 12, 398–405. [Google Scholar] [CrossRef]
- Álvarez, F.; Garnacho, F.; Ortego, J.; Sánchez-Urán, M.Á. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment. Sensors 2015, 15, 7360–7387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, B.; Zhang, G.; Tian, G. Wireless Passive Ultra High Frequency RFID Antenna Sensor for Surface Crack Monitoring and Quantitative Analysis. Sensors 2018, 18, 2130. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Cai, Z.; Xie, Z.; Zhu, H. A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology. Sensors 2018, 18, 1644. [Google Scholar] [CrossRef] [PubMed]
- IEEE Antennas and Propagation Society. IEEE Standard for Definitions of Terms for Antennas; IEEE Standard Association: Piscataway, NJ, USA, 2013; ISBN 9780738189277. [Google Scholar]
- Álvarez Gómez, F.; Albarracín-Sánchez, R.; Garnacho Vecino, F.; Granizo Arrabé, R. Diagnosis of Insulation Condition of MV Switchgears by Application of Different Partial Discharge Measuring Methods and Sensors. Sensors 2018, 18, 720. [Google Scholar] [CrossRef] [PubMed]
- Koltunowicz, W.; Badicu, L.-V.; Broniecki, U.; Belkov, A. Increased operation reliability of HV apparatus through PD monitoring. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1347–1354. [Google Scholar] [CrossRef]
- Omicron UHF Valve Sensor. Available online: https://www.omicronenergy.com/en/products/uvs-610/ (accessed on 2 October 2018).
- IntelliSAW Partial Discharge Detection. Available online: https://www.intellisaw.com/products/partial-discharge-detection.html (accessed on 2 December 2018).
- Doble Engineering Company PD Accessories. Available online: https://www.doble.com/product/pd-accessories/ (accessed on 2 December 2018).
- OMICRON UPG 620 Pulse Generator Data Sheet. Available online: http://www.supremetechnology.com.au/MainImages/Product_Manuals/OMICRON_UPG_620_Pulse_Generator_Datasheet.pdf (accessed on 19 July 2018).
- Power Diagnostic Service Co. UHF Power Transformer Hatch Cover PD Sensor. Available online: http://www.pdservice.com/en/Products/ProductsList/view/10 (accessed on 1 December 2018).
- Power Diagnostix Systems GmbH Partial Discharge Accessories. Available online: https://www.pdix.com/products/pd-accessories/pd-sensors.html (accessed on 2 December 2018).
- Judd, M.D.; Farish, O.; Pearson, J.S.; Hampton, B.F. Dielectric windows for UHF partial discharge detection. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 953–958. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Xutao, H.; Yao, X. A Partial Discharge Detection Method for SF6 Insulated Inverted Current Transformers Adopting Inner Shield Case as UHF Sensor. IEEE Trans. Power Deliv. 2018, 33, 3237–3239. [Google Scholar] [CrossRef]
- Siegel, M.; Tenbohlen, S.; Siegel, M. Calibration of UHF Partial Discharge Measurement for Power Transformers and a Comparison to the Calibration of Electrical PD Measurment. In Proceedings of the 2016 Electrical Insulation Conference, Montreal, QC, Canada, 19–22 June 2016; pp. 19–22. [Google Scholar]
- Siegel, M.; Beltle, M.; Tenbohlen, S.; Coenen, S. Application of UHF sensors for PD measurement at power transformers. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 331–339. [Google Scholar] [CrossRef]
- Coenen, S.; Tenbohlen, S. Location of PD sources in power transformers by UHF and acoustic measurements. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1934–1940. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Li, Y.; Zhang, J.; Huang, R. On the feasibility of gap detection of power transformer partial discharge uhf signals: Gap propagation characteristics of electromagnetic waves. Energies 2017, 10, 1531. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, J.; Ding, D.; Liu, W.; Liang, H. A feasibility study on bushing tap UHF sensing method for partial discharge in transformer. In Proceedings of the 7th International Conference on Condition Monitoring and Diagnosis (CMD 2018), Perth, Australia, 23–26 September 2018. [Google Scholar]
- Sinaga, H.H. Detection, Identification and Localization of Partial Discharges in Power Transformers Using UHF Techniques. Ph.D. Thesis, University of New South Wales, Kensington, Australia, 2012. [Google Scholar]
- Zhu, C.; Yin, Y.; Lu, Y.; Fei, Y. One novel type of UHF antenna for locating partial discharge and simulation of UHF signal propagation within transformer. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, CMD 2012, Bali, Indonesia, 23–27 September 2012; pp. 1179–1182. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Chen, W.; Xu, H. Study for external propagation characteristics of the UHF signal emitted by partial discharge in transformers. In Proceedings of the 32nd Electrical Insulation Conference, Philadelphia, PA, USA, 8–11 June 2014; pp. 286–289. [Google Scholar] [CrossRef]
- Fauzan, A.; Khayam, U.; Kozako, M.; Hikita, M. Design and Fabrication of 3-D Cube UHF Antenna for Partial Discharge Detection. In Proceedings of the 7th International Conference on Condition Monitoring and Diagnosis (CMD 2018), Perth, Australia, 23–26 September 2018. [Google Scholar]
- Li, Z.; Luo, L.; Zhou, N.; Sheng, G.; Jiang, X. A novel partial discharge localization method in substation based on a wireless UHF sensor array. Sensors 2017, 17, 1909. [Google Scholar] [CrossRef] [PubMed]
- Upton, D.W.; Saeed, B.I.; Mather, P.J.; Lazaridis, P.I.; Vieira, M.F.Q.; Atkinson, R.C.; Tachtatzis, C.; Garcia, M.S.; Judd, M.D.; Glover, I.A. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment. Radio Sci. 2018, 53, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Mai, X.; Tan, J.; Hu, Y.; Huang, H. Design of an omnidirectional PD UHF antenna for substation inspection robot considering installation circumstance. In Proceedings of the 7th International Conference on Condition Monitoring and Diagnosis (CMD 2018), Perth, Australia, 23–26 September 2018. [Google Scholar]
- Zanjani, M.; Akbari, A.; Shirdel, N. Investigating Partial Discharge UHF Electromagnetic Waves Propagation in Transformers Using FDTD Technique and 3D Simulation. In Proceedings of the 2012 International Conference on Condition Monitoring and Diagnosis (CMD), Bali, Indonesia, 23–27 September 2012; pp. 497–500. [Google Scholar] [CrossRef]
- Chai, H.; Phung, B.T.; Zhang, D. Development of UHF Sensors for Partial Discharge Detection in Power Transformer. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 23–26 September 2018; pp. 1–5. [Google Scholar]
- Lee, J.; Cho, J.; Choi, J.; Choo, H.; Jung, K.-Y. Design of a miniaturized spiral antenna for partial discharge detection system. Microwav. Opt. Technol. Lett. 2018, 60, 75–78. [Google Scholar] [CrossRef]
- Jahangir, H.; Akbari, A.; Werle, P.; Akbari, M.; Szczechowski, J. UHF characteristics of different types of PD sources in power transformers. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1242–1247. [Google Scholar] [CrossRef]
- Wang, F.; Bin, F.; Sun, Q.; Fan, J.; Liang, F.; Xiao, X. A novel UHF Minkowski fractal antenna for partial discharge detection. Microwav. Opt. Technol. Lett. 2017, 59, 1812–1819. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Chen, W.; Wang, Y. Design of a UHF Antenna for Partial Discharge Detection of Power Equipment. J. Sens. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Sinaga, H.H.; Phung, B.T.; Blackburn, T.R. Design of Ultra High Frequency Sensors for Detection of Partial Discharges. In Proceedings of the 16th International Symposium on High Voltage Engineering (ISH), Johanneburg, South Africa, 24–28 August 2009. [Google Scholar]
- Yang, F.; Peng, C.; Yang, Q.; Luo, H.; Ullah, I.; Yang, Y. An UWB printed antenna for partial discharge UHF detection in high voltage switchgears. Prog. Electromagn. Res. C 2016, 69, 105–114. [Google Scholar] [CrossRef]
- Sikorski, W.; Szymczak, C.; Siodła, K.; Polak, F. Hilbert curve fractal antenna for detection and on-line monitoring of partial discharges in power transformers. Eksploat. Niezawodn. Maint. Reliab. 2018, 20, 343–351. [Google Scholar] [CrossRef]
- Li, J.; Jiang, T.; Cheng, C.; Wang, C. Hilbert fractal antenna for UHF detection of partial discharges in transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2017–2025. [Google Scholar] [CrossRef]
- Harbaji, M.M.O.; Zahed, A.H.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of Hilbert Fractal Antenna for Partial Discharge Classification in Oil-Paper Insulated System. IEEE Sens. J. 2017, 17, 1037–1045. [Google Scholar] [CrossRef]
- Li, M.; Guo, C.; Peng, Z. Design of Meander Antenna for UHF Partial Discharge Detection of Transformers. Sens. Tranducers 2014, 171, 232–238. [Google Scholar]
- Zhang, G.; Zhang, X.; Tang, J.; Cheng, H. Study on localization of transformer partial discharge source with planar arrangement UHF sensors based on singular value elimination. AIP Adv. 2018, 8, 105232. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Xiao, S. Antipodal Vivaldi Antenna to Detect UHF Signals that Leaked Out of the Joint of a Transformer. Int. J. Antennas Propag. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Reddy, P.G.; Kundu, P. Detection and analysis of partial discharge using ultra high frequency sensor. In Proceedings of the 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, India, 24–26 July 2014; pp. 1–6. [Google Scholar]
- Li, J.; Cheng, C.; Bao, L.; Jiang, T. Resonant Frequency Calculation and Optimal Design of Peano Fractal Antenna for Partial Discharge Detection. Int. J. Antennas Propag. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Du, L.; Cao, M.; Qian, G. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of Power Transformers. Energies 2016, 9, 383. [Google Scholar] [CrossRef]
- Sarkar, B.; Mishra, D.K.; Koley, C.; Roy, N.K. Microstrip patch antenna based UHF sensor for detection of partial discharge in high voltage electrical equipments. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014; pp. 1–6. [Google Scholar]
- Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF Partial Discharge Sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430. [Google Scholar] [CrossRef]
- Khosronejad, M.; Gentili, G.G. Design of an Archimedean spiral UHF antenna for pulse monitoring application. In Proceedings of the 2015 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 2–3 November 2015; pp. 1–4. [Google Scholar]
- Zhang, X.; Cheng, Z.; Gui, Y.; Zhang, X.; Cheng, Z.; Gui, Y. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears. Sensors 2016, 16, 1170. [Google Scholar] [CrossRef] [PubMed]
- Azirani, M.A.; Werle, P.; Akbari, A. Effect of Surrounding of UHF Partial Discharge Probes on the Captured Pulses in Power Transformers. In Proceedings of the International Conference on Dielectric, Budapest, Hungary, 1–5 July 2018. [Google Scholar]
- Poddar, D.; Chatterjee, J.; Chowdhury, S. On some broad-band microstrip resonators. IEEE Trans. Antennas Propag. 1983, 31, 193–194. [Google Scholar] [CrossRef] [Green Version]
- Coenen, S.; Tenbohlen, S.; Markalous, S.M.; Strehl, T. Performance check and sensitivity verification for UHF PD measurements on power transformers. In Proceedings of the 15th ISH, Ljubljana, Slovenia, 28 August–1 September 2007. [Google Scholar]
- Coenen, S.; Tenbohlen, S.; Markalous, S.M.; Strehl, T. Sensitivity of UHF PD Measurement in Power Transformers. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1553–1558. [Google Scholar] [CrossRef]
- Jahangir, H.; Akbari, A.; Werle, P.; Szczechowski, J. Possibility of PD calibration on power transformers using UHF probes. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2968–2976. [Google Scholar] [CrossRef]
- Siegel, M.; Beltle, M.; Tenbohlen, S. Characterization of UHF PD sensors for power transformers using an oil-filled GTEM cell. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1580–1588. [Google Scholar] [CrossRef]
- Meijer, S.; Judd, M.D.; Tenbohlen, S. Sensitivity check for radio frequency partial discharge detection for power transformers. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008; pp. 1031–1035. [Google Scholar]
- Judd, M.D.; Farish, O.; Hampton, B.F. The excitation of UHF signals by partial discharges in GIS. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 213–228. [Google Scholar] [CrossRef]
- Martinez-Tatifa, J.M.; Robles, G.; Fresno, J.M.; Ardila-Rey, J.A. Statistical correlation between partial discharge pulses magnitudes measured in the HF and UHF range. In Proceedings of the International Conference on Dielectric, Budapest, Hungary, 1–5 July 2018. [Google Scholar]
- Ishak, A.M.; Ishak, M.T.; Jusoh, M.T.; Syed Dardin, S.F.; Judd, M.D. Design and Optimization of UHF Partial Discharge Sensors Using FDTD Modeling. IEEE Sens. J. 2017, 17, 127–133. [Google Scholar] [CrossRef]
- Judd, M.D.; Farish, O. A pulsed GTEM system for UHF sensor calibration. IEEE Trans. Instrum. Meas. 1998, 47, 875–880. [Google Scholar] [CrossRef]
- CIGRE Study Committee. Transformer Reliability Survey; CIGRE: Paris, France, 2016. [Google Scholar]
- Martin, D.; Marks, J.; Saha, T. Survey of Australian power transformer failures and retirements. IEEE Electr. Insul. Mag. 2017, 33, 16–22. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, X.; Cheng, Y. Influence of the complex structure on the characteristics of em wave from PD in power transformers. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD 2016), Montpellier, France, 3–7 July 2016; Volume 1, pp. 573–576. [Google Scholar] [CrossRef]
- Robles, G.; Sanchez-Fernandez, M.; Albarracin Sanchez, R.; Rojas-Moreno, M.V.; Rajo-Iglesias, E.; Martinez-Tarifa, J.M. Antenna Parametrization for the Detection of Partial Discharges. IEEE Trans. Instrum. Meas. 2013, 62, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, T.; Wang, C.; Cheng, C. Optimization of UHF Hilbert Antenna for Partial Discharge Detection of Transformers. IEEE Trans. Antennas Propag. 2012, 60, 2536–2540. [Google Scholar] [CrossRef]
- Akbari, A.; Werle, P.; Akbari, M.; Mirzaei, H.R. Challenges in calibration of the measurement of partial discharges at ultrahigh frequencies in power transformers. IEEE Electr. Insul. Mag. 2016, 32, 27–34. [Google Scholar] [CrossRef]
- Tang, J.; Ma, S.; Zhang, M.; Liu, Z.; Li, X.; Gui, Y. Influence of microbubbles motion state on partial discharge in transformer oil. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2646–2652. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, J.; Hu, Y.; Wang, Z.; Huang, H. Analysis of Time-Frequency Characteristics of PD Electromagnetic Wave Based on Electromagnetic Simulation. In Proceedings of the 7th International Conference on Condition Monitoring and Diagnosis (CMD 2018), Perth, Australia, 23–26 September 2018. [Google Scholar]
- Du, J.; Chen, W.; Cui, L.; Zhang, Z.; Tenbohlen, S. Investigation on the propagation characteristics of PD-induced electromagnetic waves in an actual 110 kV power transformer and its simulation results. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1941–1948. [Google Scholar] [CrossRef]
- Du, J.; Zhu, C.; Chen, W.; Zhang, Z.; Tenbohlen, S. Experimental Investigation on the Propagation Characteristics of UHF Signals in an Actual 110 kV Power Transformer. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE 2018), Athens, Greece, 10–13 September 2018. [Google Scholar]
- Loubani, A.; Harid, N.; Griffths, H. Analysis of UHF sensor response to EM waves excited by surface discharge in air using FDTD. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE 2018), Athens, Greece, 10–13 September 2018. [Google Scholar]
- Ishak, A.M.; Ishak, M.T. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method. In Proceedings of the AIP Conference Proceedings, Putrajaya, Malaysia, 23–24 November 2017. [Google Scholar]
- Ishak, A.M.; Baker, P.C.; Siew, W.H.; Judd, M.D. Characterizing the sensitivity of UHF partial discharge sensors using FDTD modeling. IEEE Sens. J. 2013, 13, 3025–3031. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, Q.; Liu, X.; Chen, X.; Bi, M. Time Delay of Ultra-High-Frequency Partial Discharge Signals in Switchgear by Improved Bispectrum Estimation Approach. In Proceedings of the 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; Volume 1, pp. 381–384. [Google Scholar]
- Lehr, J.; Ron, P. Foundations of Pulsed Power Technology; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 111862839X. [Google Scholar]
- Sinaga, H.H.; Phung, B.T.; Blackburn, T.R. Partial discharge localization in transformers using UHF detection method. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1891–1900. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Cheng, X.; Wang, W.; Li, J.; Li, J. Partial discharge location in power transformers using wideband RF detection. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1193–1199. [Google Scholar] [CrossRef]
- Robles, G.; Albarracín, R.; Martinez-Tarifa, J. Shielding effect of power transformers tanks in the ultra-high-frequency detection of partial discharges. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Albarracín, R.; Ardila-Rey, J.; Mas’ud, A. On the Use of Monopole Antennas for Determining the Effect of the Enclosure of a Power Transformer Tank in Partial Discharges Electromagnetic Propagation. Sensors 2016, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Balanis, C.A. Balanis Advanced Engineering Electromagnetics; Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Umemoto, T.; Tenbohlen, S. Validation of Simulated UHF Electromagnetic Wave Propagation in Power Transformers by Time and Frequency Domain Measurements. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE 2018), Athens, Greece, 10–13 September 2018. [Google Scholar]
- Jeahoon, S.H.; Juneseok, C.; Min, L.B. Numerical Study of Estimating the Arrival Time of UHF Signals for Partial Discharge Localization in a Power Transformer. J. Electromagn. Eng. Sci. 2018, 18, 94–100. [Google Scholar]
- Rostaminia, R.; Saniei, M.; Vakilian, M. Effects of transformer core modeling on partial discharge current pulses simulation accuracy. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 19–22 July 2015; pp. 664–667. [Google Scholar]
- Mohamed, H.; Lazaridis, P.; Upton, D.; Khan, U.; Mistry, K.; Saeed, B.; Mather, P. Partial Discharge Localization Based on Received Signal Strength. In Proceedings of the 23rd International Conference on Automation & Computing, Huddersfield, UK, 7–8 September 2017; pp. 7–8. [Google Scholar]
- Polak, F.; Sikorski, W.; Siodla, K. Location of partial discharges sources using sensor arrays. In Proceedings of the 2014 ICHVE International Conference on High Voltage Engineering and Application, Poznan, Poland, 8–11 September 2014; pp. 1–4. [Google Scholar]
- Ohashi, K.; Anzai, D.; Wang, J.; Tanaka, Y.; Yamashita, Y.; Nishikawa, H. Preliminary experimental validation of arrival direction detection system with two antennas for partial discharge noise. In Proceedings of the 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), Beijing, China, 28–31 October 2017; pp. 1–3. [Google Scholar]
- Sikorski, W. Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers. Energies 2018, 12, 115. [Google Scholar] [CrossRef]
- Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M. Radio-Frequency Localization of Multiple Partial Discharges Sources with Two Receivers. Sensors 2018, 18, 1410. [Google Scholar] [CrossRef] [PubMed]
- Nafar, M.; Niknam, T.; Gheisari, A. Using correlation coefficients for locating partial discharge in power transformer. Int. J. Electr. Power Energy Syst. 2011, 33, 493–499. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Cheng, J.; Li, X.; Ding, D.; Liu, W. Condition monitoring technology of transformer with multiple sensing methods united. In Proceedings of the 7th International Conference on Condition Monitoring and Diagnosis (CMD 2018), Perth, Australia, 23–26 September 2018. [Google Scholar]
- Kunicki, M.; Cichoń, A.; Borucki, S. Measurements on partial discharge in on-site operating power transformer: A case study. IET Gener. Trans. Distrib. 2018, 12, 2487–2495. [Google Scholar] [CrossRef]
Method | Detection Phenomenon | Applied Sensor | PD Localization | Online Monitoring |
---|---|---|---|---|
IEC 60270 method | Current impulse below 1 MHz | Coupling capacitor | Yes | No |
Dissolved gas analysis | Chemical reactions | Gas Chronographs | No | Yes |
Acoustic method | Pressure waves | Piezoelectric sensors | Yes | Yes |
High frequency (HF) method | Magnetic field | High frequency current transformer (HFCT) | Yes | Yes |
Transient Earth Voltage (TEV) method | Transient earth voltage | TEV sensor | Yes | Yes |
Radio frequency (RF) method | Electromagnetic wave | VHF/UHF antenna 1 | Yes | Yes |
Optical method | Optical sensor | No | Yes |
Sensor | Frequency Range | Applied Installation | Features | Company | Ref. |
---|---|---|---|---|---|
IA-MM-TDP | N/A | Medium Voltage Switchgear | Wireless sensor with noise cancellation | IntelliSAW | [29] |
DA100 Directional Antenna | 250 MHz–1 GHz | Substation Survey | Handheld or mounted on a tripod | Doble | [30] |
Telescopic Antenna | 250 MHz–1.9 GHz | Substation Survey | Handheld | ||
Whip Antenna | 250 MHz–1.9 GHz | Substation Survey | Handheld | ||
UCS 1 | 100 MHz–1 GHz | HV cable and cable termination | Not require parallel installed grounding connections | Omicron | [31] |
UHT 1 | 200 MHz–1 GHz | Power transformer | Installed permanently on the tank surface as the internal sensor | ||
UVS 610 | 150 MHz–1 GHz | Liquid-insulated Power transformer | Matching with DN-50 and DN-80 | ||
UHF Hatch Cover PD Sensor | 200 MHz–1.2 GHz | Power transformer | External flange sensor via a dielectric window | Power Diagnostic Service | [32] |
UHF CT | 30 MHz–900 MHz | Cable terminations, cable joints, transformers, high voltage motors | Attached to the ground wire | ||
UHF Bushing PD Sensor | 30 MHz–900 MHz | oil-immersed transformer and generator | Install at the bottom of the bushing | ||
UHF TEM PD Sensor | 150 MHz–1.2 GHz | High voltage switchgear | installed inside the switchgear panel, non-contact | ||
UHF Drain Valve PD Sensor | 200 MHz–1.2 GHz | Liquid-insulated Power transformer | Oil valve | ||
TFS 1 | N/A | Power transformer | Valve flange | Power Diagnostix | [33] |
DFS 1 | N/A | Cable joints and terminations | Differential foil sensor | ||
TVS 2 | 300 MHz–1 GHz | Liquid-insulated Power transformer | Oil valve | ||
EFS1 | N/A | GIS and Gas-insulated transmission lines | Wrapped around the unshielded flange | ||
WS 80/95/140 | N/A | GIS | External flange sensor via a dielectric window |
Antenna Configuration | Measurement Bandwidth | Physical Size | Electrical Length | Radiation Pattern | Ref. |
---|---|---|---|---|---|
Meander-line antenna | 0.3 GHz–1 GHz | 70 mm | 0.07 | Unidirectional | [59] |
Vivaldi antenna | 0.8 GHz–3 GHz | 100 mm | 0.27 | Omnidirectional | [60,61] |
Monopole antenna | 0.75 GHz–1.5 GHz | 100 mm | 0.25 | Omnidirectional | [41] |
Goubau antenna | 0.4 GHz–1 GHz | 207 mm | 0.276 | Omnidirectional | [42] |
Conical antenna | 0.6 GHz–3 GHz | 100 mm | 0.20 | Omnidirectional | [41,62] |
Hilbert fractal antenna | 0.3 GHz–1 GHz | 100 mm | 0.1 | Unidirectional | [57] |
Peano fractal antenna | 0.3 GHz–1 GHz | 90 mm | 0.09 | Unidirectional | [63,64] |
Bowtie antenna | N/A | N/A | Unidirectional | [54] | |
U-shaped UWB antenna | 0.5 GHz–1.5 GHz | 215 mm | 0.36 | Unidirectional | [55] |
Squared patch antenna | 0.35 GHz–800 MHz | 232 mm | 0.27 | Unidirectional | [65] |
Log-Spiral antenna | 0.7 GHz–3 GHz | 150 mm | 0.35 | Unidirectional | [66] |
Single-Arm Archimedean Spiral Antenna | 1.15 GHz–2.4 GHz | 200 mm | 0.77 | Unidirectional | [67] |
Double-Arm Archimedean Spiral Antenna | 0.6 MHz–1.5 GHz | 130 mm | 0.26 | Unidirectional | [41] |
Cavity-backed Archimedean Spiral Antenna | 0.925 GHz–1.6 GHz | 80 mm | 0.25 | Unidirectional | [50] |
Minkowski Fractal Antenna | 0.7 GHz–3 GHz | 300 mm | 0.70 | Omnidirectional | [52] |
Circular Patch Antenna | 0.8 GHz–3 GHz | 100 mm | 0.27 | Omnidirectional | [49] |
3D cube antenna | 1.25 GHz–3 GHz | 85 mm | 0.35 | Unidirectional | [44] |
Koch Snowflake antenna | 0.3 GHz–1 GHz | 280 mm | 0.28 | Omnidirectional | [68] |
Antenna Type | Frequency Bandwidth |
---|---|
Narrow Bandwidth | B < 0.1 |
Wide Bandwidth | 0.1 ≤ B ≤ 0.6 |
Ultra-Wide Bandwidth | B > 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, H.; Phung, B.T.; Mitchell, S. Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors 2019, 19, 1029. https://doi.org/10.3390/s19051029
Chai H, Phung BT, Mitchell S. Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors. 2019; 19(5):1029. https://doi.org/10.3390/s19051029
Chicago/Turabian StyleChai, Hua, B.T. Phung, and Steve Mitchell. 2019. "Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review" Sensors 19, no. 5: 1029. https://doi.org/10.3390/s19051029
APA StyleChai, H., Phung, B. T., & Mitchell, S. (2019). Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors, 19(5), 1029. https://doi.org/10.3390/s19051029