Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals
Abstract
:1. Introduction
2. Background
2.1. Principle of PPW Measurements Based on Piezoelectric Sensors
2.2. Relationship between PPW and BP
3. Methodology
3.1. Experimental Protocol
3.2. Signal Processing
3.3. Feature Extraction
3.4. Data Analysis
3.4.1. BP Estimation Models
3.4.2. Performance Assessment of BP Estimation Models
4. Experimental Results
4.1. Performance of the BP Estimation Models
4.2. Robustness Performance of the PPW-Based BP Models
5. Discussion
5.1. PPW-Based Method for BP Estimation
5.2. Limitations
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Whelton, P.K.; Carey, R.M. The 2017 Clinical Practice Guideline for High Blood Pressure. JAMA 2017, 318, 2073. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistic 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Parati, G.; Ochoa, J.E.; Lombardi, C.; Bilo, G. Assessment and management of blood-pressure variability. Nat. Rev. Cardiol. 2013, 10, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Kitterman, J.A.; Phibbs, R.H.; Tooley, W.H. Catheterization of umbilical vessels in newborn infants. Pediatr. Clin. N. Am. 1970, 17, 895–912. [Google Scholar] [CrossRef]
- Peter, L.; Noury, N.; Cerny, M. A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising? IRBM 2014, 35, 271–282. [Google Scholar] [CrossRef]
- Zhang, J.M.; Wei, P.F.; Li, Y. A LabVIEW based measure system for pulse wave transit time. In Proceedings of the International Conference on Information Technology and Applications in Biomedicine, Shenzhen, China, 30–31 May 2008; pp. 477–480. [Google Scholar]
- Ding, X.R.; Zhang, Y.T.; Liu, J.; Dai, W.X.; Tsang, H.K. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio. IEEE Trans. Biomed. Eng. 2016, 63, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Wang, H.; Samuel, O.W.; Liu, G.; Huang, Z.; Li, G. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Physiol. Meas. 2017, 39, 025005. [Google Scholar] [CrossRef]
- Miao, F.; Fu, N.; Zhang, Y.T.; Ding, X.R.; Hong, X.; He, Q.; Li, Y. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques. IEEE J. Biomed. Health Inform. 2017, 21, 1730–1740. [Google Scholar] [CrossRef]
- Baek, H.J.; Kim, K.K.; Kim, J.S.; Lee, B.; Park, K.S. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors. Physiol. Meas. 2010, 31, 145–157. [Google Scholar] [CrossRef]
- Xing, X.; Sun, M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomed. Opt. Express 2016, 7, 3007. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Lee, J.J.; Ahan, B.H.; Park, P.W. 3-Point Radial Artery Pressure Pulse Wave Transducer Using Pneumatic System. U.S. Patent 6,730,040, 4 May 2004. [Google Scholar]
- Li, Y.; Wang, Z.; Zhang, L.; Yang, X.; Song, J. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Australas. Phys. Eng. Sci. Med. 2014, 37, 367–376. [Google Scholar] [CrossRef]
- Liu, S.H.; Cheng, D.C.; Su, C.H. A Cuffless Blood Pressure Measurement Based on the Impedance Plethysmography Technique. Sensors 2017, 17, 1176. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Lee, C.; Lee, M. Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comput. Boil. Med. 2009, 39, 1145–1152. [Google Scholar] [CrossRef]
- Bhagat, A.; Kapoor, N.; Bhagat, H. Pulse wave analysis as an experimental tool to clinical application: Past and present (review). Acta Physiol. Hung. 2011, 98, 382. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Kulkarni, A.; Chandran, S.; Jayaraman, V.K.; Kulkarni, B.D. Nadi Tarangini: A pulse based diagnostic system. In Proceedings of the IEEE International Conference of Engineering in Medicine and Biology Society (EMBS 2007), Honolulu, HI, USA, 23–26 August 2007; p. 2207. [Google Scholar]
- Tyan, C.-C.; Liu, S.-H.; Chen, J.-Y.; Chen, J.-J.; Liang, W.-M. A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery. IEEE Trans. Bio-Med. Eng. 2008, 55, 288–297. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, H.; Tao, L.Q.; Li, Y.; Wang, X.; Deng, N.; Yang, Y.; Ren, T.L. A Flexible, Highly Sensitive and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Appl. Mater. Interfaces 2016, 8, 26458–26462. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T.; Whitesides, G.M. A Large-Area, Flexible Pressure Sensor Matrix with Organic Field-Effect Transistors for Artificial Skin Applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970. [Google Scholar] [CrossRef]
- Baek, H.J.; Chung, G.S.; Kim, K.K.; Park, K.S. A smart health monitoring chair for nonintrusive measurement of biological signals. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 150–158. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Lu, G. A robust signal preprocessing framework for wrist pulse analysis. Biomed. Signal Process. Control. 2016, 23, 62–75. [Google Scholar] [CrossRef]
- Liang, R.; Wang, Q.M. Pulse pressure sensor based on flexible PZT thick-film composite device. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 1559–1562. [Google Scholar]
- McLaughlin, J.; McNeill, M.; Braun, B.; McCormack, P.D. Piezoelectric sensor determination of arterial pulse wave velocity. Physiol. Meas. 2003, 24, 693–702. [Google Scholar] [CrossRef]
- Suzuki, H.; Yamanishi, A. Pressure Pulse Wave Sensor and Pressure-Pulse-Wave Analyzing Apparatus. U.S. Patent 7,217,244, 15 May 2007. [Google Scholar]
- Foo, J.Y.A.; Chu, S.L. Pulse Transit Time Based on Piezoelectric Technique at the Radial Artery. J. Clin. Monit. Comput. 2006, 20, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecki, G.M.; Melbin, J.; Noordergraaf, A. Arterial tonometry: Review and analysis. J. Biomech. 1983, 16, 141–152. [Google Scholar] [CrossRef]
- Hansen, S.; Staber, M. Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error. Eur. J. Anaesthesiol. 2006, 23, 781–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerhof, N.; Sipkema, P.; Bos, G.C.V.D.; Elzinga, G. Forward and backward waves in the arterial system. Cardiovasc. Res. 1972, 6, 648. [Google Scholar] [CrossRef] [PubMed]
- Campeau, L. Percutaneous radial artery approach for coronary angiography. Catheter. Cardiovasc. Diagn. 1989, 16, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Wang, W.K.; Kao, T.; Yu, B.C.; Chiang, B.C. Spectral analysis of radial pulse in patients with acute, uncomplicated myocardial infarction. Jpn. Heart J. 1993, 34, 131–143. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F. Time domain analysis of the arterial pulse in clinical medicine. Med. Boil. Eng. Comput. 2009, 47, 119–129. [Google Scholar] [CrossRef]
- Mackenzie, I.S.; Wilkinson, I.B.; Cockcroft, J.R. Assessment of arterial stiffness in clinical practice. QJM Mon. J. Assoc. Physicians 2002, 95, 67. [Google Scholar] [CrossRef]
- Liu, W.; Fang, X.; Chen, Q.; Li, Y.; Li, T. Reliability analysis of an integrated device of ECG, PPG and pressure pulse wave for cardiovascular disease. Microelectron. Reliab. 2018, 87, 183–187. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Tsang, H.K. Impact of heart disease and calibration interval on accuracy of pulse transit time-based blood pressure estimation. Physiol. Meas. 2016, 37, 227–237. [Google Scholar] [CrossRef]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA, 1997; pp. 525–526. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistics Notes: Measurement error. Br. Med J. 1996, 313, 744. [Google Scholar] [CrossRef]
- Chen, W.; Kobayashi, T.; Ichikawa, S.; Takeuchi, Y.; Togawa, T. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Boil. Eng. Comput. 2000, 38, 569–574. [Google Scholar] [CrossRef]
- Gu, W.B.; Poon, C.C.Y.; Zhang, Y.T. A novel parameter from PPG dicrotic notch for estimation of systolic blood pressure using pulse transit time. In Proceedings of the ISSS-MDBS International Summer School and Symposium on Medical Devices and Biosensors, Hong Kong, China, 1–3 June 2008; pp. 86–88. [Google Scholar]
- Poon, C.C.Y.; Zhang, Y.T. Cuff-less and Noninvasive Measurements of Arterial Blood Pressure by Pulse Transit Time. In Proceedings of the International Conference of the Engineering in Medicine & Biology Society, Shanghai, China, 1–4 September 2005; p. 5877. [Google Scholar]
- Zheng, Y.L.; Yan, B.P.; Zhang, Y.T.; Poon, C.C.Y. An armband wearable device for overnight and cuff-less blood pressure measurement. IEEE Trans. Bio-Med. Eng. 2014, 61, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- O’brien, E.; Petrie, J.; Littler, W.; Padfield, P.L.; O’Malley, K.; Jamieson, M.; Altman, D.; Bland, M.; Atkins, N. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J. Hypertens. 1990, 8, 607. [Google Scholar] [CrossRef] [PubMed]
- Hoeksel, S.A.; Jansen, J.R.; Blom, J.A.; Schreuder, J.J. Detection of dicrotic notch in arterial pressure signals. J. Clin. Monit. 1997, 13, 309–316. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-Less Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Dawber, T.R.; Thomas, H.E., Jr.; Mcnamara, P.M. Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease. Angiology 1973, 24, 244. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Goubran, R.A.; Liu, X.P. Secondary Peak Detection of PPG Signal for Continuous Cuffless Arterial Blood Pressure Measurement. IEEE Trans. Instrum. Meas. 2014, 63, 1431–1439. [Google Scholar]
- Yoon, Y.Z.; Kang, J.M.; Kwon, Y.; Park, S.; Noh, S.; Kim, Y.; Park, J.; Hwang, S.W. Cuff-less Blood Pressure Estimation using Pulse Waveform Analysis and Pulse Arrival Time. IEEE J. Biomed. Health Inform. 2018, 22, 1068–1074. [Google Scholar] [CrossRef]
- Uangpairoj, P.; Shibata, M. Evaluation of vascular wall elasticity of human digital arteries using alternating current-signal photoplethysmography. Vasc. Health Risk Manag. 2013, 2013, 283–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Z. A SVM Method for Continuous Blood Pressure Estimation from a PPG Signal. In Proceedings of the International Conference on Machine Learning and Computing, Ho Chi Minh City, Vietnam, 13–16 January 2017; pp. 128–132. [Google Scholar]
- He, R.; Huang, Z.P.; Ji, L.Y.; Wu, J.K. Beat-to-beat ambulatory blood pressure estimation based on random forest. In Proceedings of the IEEE International Conference on Wearable and Implantable Body Sensor Networks, San Francisco, CA, USA, 14–17 June 2016; pp. 194–198. [Google Scholar]
Parameter | Definition |
---|---|
Pressure range | −50 to +300 mmHg |
Pressure sensitivity | 2000 μA/mmHg |
Temperature coefficient | 1 × 10−4 °C |
Response time | <0.4 ms |
Precision | 0.5% |
Features | Definitions | Equations |
---|---|---|
RtAmCE | Amplitude ratio of point C and point E | P2/P1 |
TmAE | Time span between point A and point E | T2 |
TmBE | Time span between point B and point E | T + 3 |
TmCD | Time span between point C and point D | T4 |
RtTP | Time ratio of T4 to peak interval | T4/T + 1 |
K | PPW characteristic value | Formula (1) |
K1 | Systolic characteristic value | Formula (2) |
K2 | Diastolic characteristic value | Formula (3) |
AS | Ascending slope of PPWr | |
1st dPPW_PAm | Peak Amplitude of 1st dPPWr | P3 |
1st dPPW_TW | Time width of 1st dPPWr | T + 6 |
2nd dPPW_TAm | Total Amplitude of 2nd dPPWr | P5 |
2nd dPPW_PAm | Peak Amplitude of 2nd dPPWr | P6 |
2nd dPPW_FAm | Foot Amplitude of 2nd dPPWr | P7 |
1st dPPW_AS | Ascending slope of 1st dPPWr | P3/T5 |
1st dPPW_DS | Descending slope of 1st dPPWr | P4/T + 6 |
1st dPPW_AA | Ascending area of 1st dPPWr | |
2nd dPPW_AS | Ascending slope of 2nd dPPWr | P6/T7 |
2nd dPPW_DS | Descending slope of 2nd dPPW | P5/P8 |
2nd dPPW_AA | Ascending ared of 2nd dPPW | |
PIR | Ratio of PPW peak amplitude to foot amplitude | PL/PH |
PTT | Time span between the ECG R peak and 1st dPPW peak | PT + 1 |
Estimated Error (MD ± SD) (mmHg) | Estimated Error (MD ± SD) (mmHg) | ||||||
---|---|---|---|---|---|---|---|
Models | Variables | SBP | DBP | Models | Variables | SBP | DBP |
1 | RtAmCE | 2.15 ± 8.45 | 1.76 ± 5.58 | 14 | 2nd dPPW_FAm | 2.27 ± 8.07 | 2.03 ± 5.76 |
2 | TmAE | 2.34 ± 7.98 | 2.01 ± 5.65 | 15 | 1st dPPW_AS | 2.19 ± 8.01 | 1.97 ± 5.59 |
3 | TmBE | 2.24 ± 8.10 | 1.88 ± 5.75 | 16 | 1st dPPW_DS | 2.48 ± 8.08 | 2.16 ± 5.68 |
4 | TmCD | 2.39 ± 8.25 | 1.99 ± 5.89 | 17 | 1st dPPW_AA | 2.06 ± 8.02 | 1.84 ± 5.54 |
5 | RtTP | 2.11 ± 8.00 | 1.88 ± 5.66 | 18 | 2nd dPPW_AS | 2.11 ± 8.06 | 1.88 ± 5.75 |
6 | K | 2.27 ± 8.27 | 2.03 ± 5.82 | 19 | 2nd dPPW_DS | 2.32 ± 8.10 | 2.17 ± 5.62 |
7 | K1 | 2.22 ± 8.36 | 1.87 ± 5.75 | 20 | 2nd dPPW_AA | 2.32 ± 8.03 | 2.03 ± 5.65 |
8 | K2 | 2.40 ± 8.57 | 2.06 ± 5.95 | 21 | PIR | 2.21 ± 8.07 | 1.95 ± 5.74 |
9 | AS | 2.17 ± 8.14 | 1.92 ± 5.80 | 22 | MPF | 0.70 ± 7.78 a | 0.83 ± 5.45 b |
10 | 1st dPPW_PAm | 2.15 ± 8.08 | 1.95 ± 5.76 | 23 | PTT | 2.17 ± 8.26 | 2.07 ± 5.71 |
11 | 1st dPPW_TW | 2.15 ± 8.04 | 1.93 ± 5.71 | 24 | 1/PTT | 2.22 ± 8.50 | 2.08 ± 5.70 |
12 | 2nd dPPW_TAm | 2.31 ± 8.41 | 1.99 ± 5.86 | 25 | ln(1/PTT), 1/PTT2 | 2.03 ± 8.15 a | 1.97 ± 5.75 b |
13 | 2nd dPPW_PAm | 2.22 ± 8.11 | 1.99 ± 5.74 | ||||
Decrease estimation error | 1.33 ± 0.37 | 1.14 ± 0.20 |
CP at ± 5 mmHg | CP at ± 10 mmHg | CP at ± 15 mmHg | Grade | ||
---|---|---|---|---|---|
Proposed model (model 22) | SBP | 50.95% | 81.18% | 94.77% | B |
DBP | 64.45% | 93.44% | 98.76% | A | |
PTT-based model (model 25) | SBP | 47.53% | 77.28% | 93.16% | C |
DBP | 58.84% | 89.62% | 97.95% | B |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.-D.; Liu, J.-K.; Wen, B.; He, Q.-Y.; Li, Y.; Miao, F. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors 2018, 18, 4227. https://doi.org/10.3390/s18124227
Liu Z-D, Liu J-K, Wen B, He Q-Y, Li Y, Miao F. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors. 2018; 18(12):4227. https://doi.org/10.3390/s18124227
Chicago/Turabian StyleLiu, Zeng-Ding, Ji-Kui Liu, Bo Wen, Qing-Yun He, Ye Li, and Fen Miao. 2018. "Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals" Sensors 18, no. 12: 4227. https://doi.org/10.3390/s18124227
APA StyleLiu, Z. -D., Liu, J. -K., Wen, B., He, Q. -Y., Li, Y., & Miao, F. (2018). Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors, 18(12), 4227. https://doi.org/10.3390/s18124227