Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation
Abstract
:1. Introduction
2. Design, Experiment and Discussion
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhang, W.; Fu, H.; Jia, Z.; Ma, C. Temperature dependency of cladding-etched fiber Bragg grating surrounded with liquid. Optik 2017, 132, 401–406. [Google Scholar] [CrossRef]
- Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D. Elaboration of new ceramic composites containing glass fibre production wastes. Bol. Soc. Esp. Ceram. V. 2013, 52, 88–92. [Google Scholar] [CrossRef]
- Stoica, L.; Solomko, V.; Baumheinrich, T.; Del Regno, R.; Beigh, R.; White, I.; Williams, P. Design of a frequency signal conditioning unit applied to rotating systems in high temperature aero engine control. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015. [Google Scholar]
- Albertson, J.D.; Harvey, T.; Foderaro, G.; Zhu, P.; Zhou, X.; Ferrari, S.; Thoma, E.D. A mobile sensing approach for regional surveillance of fugitive methane emissions in oil and gas production. Environ. Sci. Technol. 2016, 50, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
- Galvão, J.R.; Di Renzo, A.B.; Schaphauser, P.E.; Dutra, G.; Dreyer, U.J.; Kalinowski, A.; Martelli, C. Optical fiber Bragg grating instrumentation applied to horse gait detection. IEEE Sens. J. 2018, 99, 5778–5785. [Google Scholar] [CrossRef]
- Zipf, M.; Manara, J.; Stark, T.; Arduini, M.; Ebert, H.P.; Hartmann, J. Infrared-optical characterization of emitting and absorbing gases at high temperatures and high pressures. High Temp.-High Press. 2018, 47, 3–21. [Google Scholar]
- Yan, M.; Tylczak, J.; Yu, Y.; Panagakos, G.; Ohodnicki, P. Multi-component optical sensing of high temperature gas streams using functional oxide integrated silica based optical fiber sensors. Sens. Actuators B Chem. 2018, 255, 357–365. [Google Scholar] [CrossRef]
- Ruiz-Lombera, R.; Laarossi, I.; Rodríguez-Cobo, L.; Quintela, M.Á.; López-Higuera, J.M.; Mirapeix, J. Distributed high-temperature optical fiber sensor based on a brillouin optical time domain analyzer and multimode gold-coated fiber. IEEE Sens. J. 2017, 17, 2393–2397. [Google Scholar] [CrossRef]
- Warren-Smith, S.C.; Nguyen, L.V.; Lang, C.; Ebendorff-Heidepriem, H.; Monro, T.M. Temperature sensing up to 1300 °C using suspended-core microstructured optical fibers. Opt. Express 2016, 24, 3714. [Google Scholar] [CrossRef] [PubMed]
- Rong, Q.; Hao, Y.; Zhou, R.; Yin, X.; Shao, Z.; Liang, L.; Qiao, X. UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer. Sensors 2017, 17, 397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Lin, Q.; Jiang, Z.; Yao, K.; Tian, B.; Fang, X.; Zhang, Z. High temperature high sensitivity multipoint sensing system based on three cascade Mach–Zehnder interferometers. Sensors 2018, 18, 2688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Lin, Q.; Jing, W.; Jiang, Z.; Wu, Z.; Yao, K.; Shi, P. High temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers. Sens. Actuators A Phy. 2017, 267, 2688. [Google Scholar] [CrossRef]
- Cao, H.; Shu, X. Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint. IEEE Sens. J. 2017, 17, 3341–3345. [Google Scholar] [CrossRef]
- Elsmann, T.; Habisreuther, T.; Graf, A.; Rothhardt, M.; Bartelt, H. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express 2013, 21, 4591–4597. [Google Scholar] [CrossRef] [PubMed]
- Habisreuther, T.; Elsmann, T.; Pan, Z.; Graf, A.; Willsch, R.; Schmidt, M.A. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Therm. Eng. 2015, 91, 860–865. [Google Scholar] [CrossRef]
- Mamidi, V.R.; Kamineni, S.; Prassad, R.S.; Rao, T.V. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability. Opt. Eng. 2017, 56, 090502. [Google Scholar] [CrossRef]
- Wei, W.; Xiaotian, S.; Ying, W. Sapphire fiber-optic temperature sensor based on black-body radiation law. Proc. Eng. 2015, 99, 1179–1184. [Google Scholar] [CrossRef]
- Masek, V.; Mojzes, P.; Palacky, J.; Bok, J.; Anzenbacher, P. Binding of Platinum complexes to DNA monitored by Raman spectroscopy. AIP Conference Proceedings. 2010, 1267, 416–417. [Google Scholar]
- Guo, Y.; Xia, W.; Hu, Z.; Wang, M. High-temperature sensor instrumentation with a thin-film-based sapphire fiber. Appl. Opt. 2017, 56, 2068. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.W.; Hao, X.J.; Li, W.; Zhou, H.C. Application of the SSPM in sapphire fiber black-body cavity transient high temperature sensor. J. North Univer. China 2011, 32, 619–624. (In Chinese) [Google Scholar]
- Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R.D.; Thornagel, R.; Sapritsky, V. Thermodynamic temperature of high-temperature fixed points traceable to blackbody radiation and synchrotron radiation. Int. J. Thermophys. 2017, 38, 144. [Google Scholar] [CrossRef]
- Ogarev, S.A.; Khlevnoi, B.B.; Samoilov, M.L.; Otryaskin, D.A.; Grigor’eva, I.A.; Solodilov, M.V.; Sapritskii, V.I. High-temperature blackbody models for use in photometry, radiometry, and radiation thermometry. Meas. Tech. 2016, 58, 1255–1260. [Google Scholar] [CrossRef]
- Rose, A.H.; Etzel, S.M.; Wang, C.M. Verdet constant dispersion in annealed optical fiber current sensors. J. Lightwave Technol. 1997, 15, 803–807. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Tang, Y.; McNamara, P.; Fleming, S. Viewing structural inhomogeneities at the core-cladding interface of re-heated MCVD optical fiber preforms with optical microscopy. Opt. Express 2004, 12, 6153–6158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.H.; Wang, S.W.; Huang, X.X.; Guo, J.K. Unidirectional carbon fiber and SiC particulate Co-reinforced fused silica composite. Ceram. Int. 2007, 33, 1395–1398. [Google Scholar] [CrossRef]
- Kulesh, A.Y.; Eronyan, M.A.; Meshkovskii, I.K.; Parfenov, P.S.; Tsibinogina, M.K. Influence of mechanically stimulated hydrolysis on static fatigue and strength of silica optical fiber. Strength Fract. Complex. 2017, 10, 39–47. [Google Scholar] [CrossRef]
- Wagstaff, F.E.; Richards, K.J. Kinetics of crystallization of stoichiometric SiO2 glass in H2O atmospheres. J. Am. Ceram. Soc. 1966, 49, 118–121. [Google Scholar] [CrossRef]
- Wagstaff, F.E. Crystallization kinetics of internally nucleated vitreous silica. J. Am. Ceram. Soc. 1968, 51, 449–453. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Zhao, N.; Yao, K.; Jiang, Z.; Tian, B.; Shi, P.; Chen, F. Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation. Sensors 2018, 18, 4071. https://doi.org/10.3390/s18114071
Lin Q, Zhao N, Yao K, Jiang Z, Tian B, Shi P, Chen F. Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation. Sensors. 2018; 18(11):4071. https://doi.org/10.3390/s18114071
Chicago/Turabian StyleLin, Qijing, Na Zhao, Kun Yao, Zhuangde Jiang, Bian Tian, Peng Shi, and Feng Chen. 2018. "Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation" Sensors 18, no. 11: 4071. https://doi.org/10.3390/s18114071
APA StyleLin, Q., Zhao, N., Yao, K., Jiang, Z., Tian, B., Shi, P., & Chen, F. (2018). Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation. Sensors, 18(11), 4071. https://doi.org/10.3390/s18114071