A Survey of LoRaWAN for IoT: From Technology to Application
Abstract
:1. Introduction
2. Introduction to LoRa and LoRaWAN
2.1. LoRa
2.2. LoRaWAN MAC Layer
2.2.1. Adaptive and Data Rate Mechanism
2.2.2. Network Joining Mechanism and Security Context
3. Applications and Deployments
3.1. Applications
3.2. Deployments
4. Tools and Methodology
4.1. System Level Simulators
4.2. Testbed Deployments
5. Physical Layer Performance Evaluation
5.1. Coverage
5.2. Interference Impact on LoRa
5.2.1. Interference from Other Technologies
5.2.2. LoRa Self-Interference
6. MAC Layer Performance Evaluation
6.1. LoRaWAN Network Models
6.1.1. Mathematical Models
6.1.2. Empirical Based
- If the interferer starts after the preamble and the RSSI from the interferer is at the same level or lower than the interfered transmission, then the interfered transmission will be received correctly.
- If the interferer starts after the end of the preamble and the header time and has a higher RSSI at the receiver, then the first transmission will be received with the wrong payload CRC.
- If the last six symbols of the transmitter preamble are received correctly, the receiver can synchronize with the transmitter.
6.2. Power Usage
6.3. Security
7. LoRaWAN Improvements
7.1. Network Scalability Assessment and Improvement Methods
7.2. Synchronization and Scheduling for LoRaWAN
8. Extensions
8.1. New MAC Design for LoRa
8.2. IPv6 over LoRaWAN
8.3. LoRa Multihop Networks
8.4. Multi-Modal Networks
9. Tackling LoRaWAN Challenges and SWOT Analysis
9.1. Communication Scalability and Reliability
9.2. Power Usage Issues
9.3. Security Challenges
9.4. SWOT Analysis of LoRaWAN
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seller, O.B.; Sornin, N. Low Power Long Range Transmitter. US Patent 9,252,834, 2 February 2016. [Google Scholar]
- Sforza, F. Communications System. US Patent 720139, 2 July 2009. [Google Scholar]
- SX1272/73—860 MHz to 1020 MHz Low Power Long Range Transceiver. Available online: https://www.semtech.com/uploads/documents/sx1272.pdf (accessed on 15 November 2018).
- Vangelista, L. Frequency Shift Chirp Modulation: The LoRa Modulation. IEEE Signal Process. Lett. 2017, 24, 1818–1821. [Google Scholar] [CrossRef]
- LoRaWAN. What Is It? A Technical Overview of LoRA and LoRaWAN. Available online: https://www.lora-alliance.org/ (accessed on 15 November 2018).
- Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Short Range Devices Frequency Range with Power Levels Ranging up to 500 mW; ETSI: Sophia-Antipolis, France, 2012.
- LoRa Alliance. LoRaWAN R1.0. Open Standard Released for the IoT; LoRa Alliance: Fremont, CA, USA, 2015. [Google Scholar]
- LoRa Alliance. LoRaWAN Regional Parameters v1.0; LoRa Alliance: Fremont, CA, USA, 2016. [Google Scholar]
- LoRa Alliance. LoRaWAN Specifications v1.0; LoRa Alliance: Fremont, CA, USA, 2015. [Google Scholar]
- LoRa Alliance. LoRaWAN Regional Parameters v1.1; LoRa Alliance: Fremont, CA, USA, 2017. [Google Scholar]
- LoRa Alliance. LoRaWAN Specifications v1.1; LoRa Alliance: Fremont, CA, USA, 2017. [Google Scholar]
- Catherwood, P.A.; Steele, D.; Little, M.; Mccomb, S.; Mclaughlin, J. A Community-Based IoT Personalized Wireless Healthcare Solution Trial. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Petäjäjärvi, J.; Mikhaylov, K.; Yasmin, R.; Hämäläinen, M.; Iinatti, J. Evaluation of LoRa LPWAN technology for indoor remote health and wellbeing monitoring. Int. J. Wirel. Inf. Netw. 2017, 24, 153–165. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed]
- Benaissa, S.; Plets, D.; Tanghe, E.; Trogh, J.; Martens, L.; Vandaele, L.; Verloock, L.; Tuyttens, F.; Sonck, B.; Joseph, W. Internet of animals: Characterisation of LoRa sub-GHz off-body wireless channel in dairy barns. Electron. Lett. 2017, 53, 1281–1283. [Google Scholar] [CrossRef]
- Sartori, D.; Brunelli, D. A smart sensor for precision agriculture powered by microbial fuel cells. In Proceedings of the Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016; pp. 1–6. [Google Scholar]
- Ilie-Ablachim, D.; Pătru, G.C.; Florea, I.M.; Rosner, D. Monitoring device for culture substrate growth parameters for precision agriculture: Acronym: MoniSen. In Proceedings of the 15th RoEduNet Conference: Networking in Education and Research, Bucharest, Romania, 7–9 September 2016; pp. 1–7. [Google Scholar]
- Wixted, A.J.; Kinnaird, P.; Larijani, H.; Tait, A.; Ahmadinia, A.; Strachan, N. Evaluation of LoRa and LoRaWAN for wireless sensor networks. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Lee, H.C.; Ke, K.H. Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation. IEEE Trans. Instrum. Meas. 2018, 67, 2177–2187. [Google Scholar] [CrossRef]
- Sharma, V.; You, I.; Pau, G.; Collotta, M.; Lim, J.D.; Kim, J.N. LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems. Energies 2018, 11, 573. [Google Scholar] [CrossRef]
- Aernouts, M.; Berkvens, R.; Van Vlaenderen, K.; Weyn, M. Sigfox and LoRaWAN Datasets for Fingerprint Localization in Large Urban and Rural Areas. Data 2018, 3, 13. [Google Scholar] [CrossRef]
- Bakkali, W.; Kieffer, M.; Lalam, M.; Lestable, T. Kalman filter-based localization for Internet of Things LoRaWAN™ end points. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Podevijn, N.; Plets, D.; Trogh, J.; Martens, L.; Suanet, P.; Hendrikse, K.; Joseph, W. TDoA-Based Outdoor Positioning with Tracking Algorithm in a Public LoRa Network. Wirel. Commun. Mob. Comput. 2018, 2018, 1864209. [Google Scholar] [CrossRef]
- Pasolini, G.; Buratti, C.; Feltrin, L.; Zabini, F.; De Castro, C.; Verdone, R.; Andrisano, O. Smart City Pilot Projects Using LoRa and IEEE802. 15.4 Technologies. Sensors 2018, 18, 1118. [Google Scholar] [CrossRef] [PubMed]
- Tome, M.; Nardelli, P.; Alves, H. Long-range Low-power Wireless Networks and Sampling Strategies in Electricity Metering. IEEE Trans. Ind. Electron. 2018, 66, 1629–1637. [Google Scholar] [CrossRef]
- Varsier, N.; Schwoerer, J. Capacity limits of LoRaWAN technology for smart metering applications. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Rizzi, M.; Ferrari, P.; Flammini, A.; Sisinni, E. Evaluation of the IoT LoRaWAN solution for distributed measurement applications. IEEE Trans. Instrum. Meas. 2017, 66, 3340–3349. [Google Scholar] [CrossRef]
- Campo, G.D.; Gomez, I.; Calatrava, S.; Martinez, R.; Santamaria, A. Power Distribution Monitoring Using LoRa: Coverage Analysis in Suburban Areas. In Proceedings of the 2018 International Conference on Embedded Wireless Systems and Networks, EWSN, Madrid, Spain, 14–16 February 2018; pp. 233–238. [Google Scholar]
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef]
- Patel, D.; Won, M. Experimental Study on Low Power Wide Area Networks (LPWAN) for Mobile Internet of Things. In Proceedings of the 2017 IEEE 85thVehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015; pp. 55–59. [Google Scholar]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A study of LoRa: Long range & low power networks for the internet of things. Sensors 2016, 16, 1466. [Google Scholar]
- Neumann, P.; Montavont, J.; Noël, T. Indoor deployment of low-power wide area networks (LPWAN): A LoRaWAN case study. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016; pp. 1–8. [Google Scholar]
- Petäjäjärvi, J.; Mikhaylov, K.; Hämäläinen, M.; Iinatti, J. Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring. In Proceedings of the 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), Worcester, MA, USA, 20–23 March 2016; pp. 1–5. [Google Scholar]
- Hosseinzadeh, S.; Larijani, H.; Curtis, K.; Wixted, A.; Amini, A. Empirical propagation performance evaluation of LoRa for indoor environment. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 26–31. [Google Scholar]
- Rizzi, M.; Ferrari, P.; Flammini, A.; Sisinni, E.; Gidlund, M. Using LoRa for industrial wireless networks. In Proceedings of the 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), Trondheim, Norway, 31 May–2 June 2017; pp. 1–4. [Google Scholar]
- Haxhibeqiri, J.; Karaagac, A.; Van den Abeele, F.; Joseph, W.; Moerman, I.; Hoebeke, J. LoRa indoor coverage and performance in an industrial environment: Case study. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar]
- Van den Abeele, F.; Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Scalability analysis of large-scale LoRaWAN networks in ns-3. IEEE Internet Things J. 2017, 4, 2186–2198. [Google Scholar] [CrossRef]
- LoRaSim. Available online: http://www.lancaster.ac.uk/scc/sites/lora/ (accessed on 15 November 2018).
- Reynders, B.; Wang, Q.; Pollin, S. A LoRaWAN module for ns-3: Implementation and evaluation. In Proceedings of the 10th Workshop on ns-3, Surathkal, India, 13–14 June 2018; pp. 61–68. [Google Scholar]
- NS3 LoRa Simulator. Available online: https://github.com/networkedsystems/lora-ns3 (accessed on 15 November 2018).
- IDLAB LoRaWAN ns3 simulator. Available online: https://github.com/imec-idlab/ns-3-devgit/tree/lorawan (accessed on 15 November 2018).
- Voigt, T.; Bor, M.; Roedig, U.; Alonso, J. Mitigating Inter-network Interference in LoRa Networks. In Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks, Uppsala, Sweden, 20–22 February 2017; pp. 323–328. [Google Scholar]
- Slabicki, M.; Premsankar, G.; Di Francesco, M. Adaptive Configuration of LoRa Networks for Dense IoT Deployments. In Proceedings of the 16th IEEE/IFIP Network Operations and Management Symposium (NOMS 2018), Taipei, Taiwan, 23–27 April 2018; pp. 1–9. [Google Scholar]
- Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa low-power wide-area networks scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Malta, 13–17 November 2016; pp. 59–67. [Google Scholar]
- Magrin, D.; Centenaro, M.; Vangelista, L. Performance evaluation of LoRa networks in a smart city scenario. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- NS3 LoRa Simulator. Available online: https://github.com/DvdMgr/lorawan (accessed on 15 November 2018).
- Pop, A.I.; Raza, U.; Kulkarni, P.; Sooriyabandara, M. Does bidirectional traffic do more harm than good in LoRaWAN based LPWA networks? In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Croce, D.; Gucciardo, M.; Tinnirello, I.; Garlisi, D.; Mangione, S. Impact of spreading factor imperfect orthogonality in lora communications. In International Tyrrhenian Workshop on Digital Communication; Springer: Cham, Switzerland, 2017; pp. 165–179. [Google Scholar]
- Duda, A.; To, T.H. Simulation of LoRa in NS-3: Improving LoRa Performance with CSMA. In Proceedings of the IEEE ICC, Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Kouvelas, N.; Rao, V.; Prasad, R. Employing p-CSMA on a LoRa Network Simulator. arXiv, 2018; arXiv:1805.12263. [Google Scholar]
- Bor, M.; Vidler, J.; Roedig, U. LoRa for the Internet of Things. In Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, EWSN ’16, Graz, Austria, 15–17 February 2016; pp. 361–366. [Google Scholar]
- Petrić, T.; Goessens, M.; Nuaymi, L.; Toutain, L.; Pelov, A. Measurements, performance and analysis of LoRa FABIAN, a real-world implementation of LPWAN. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–7. [Google Scholar]
- Marais, J.M.; Malekian, R.; Abu-Mahfouz, A.M. LoRa and LoRaWAN testbeds: A review. In Proceedings of the IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 1496–1501. [Google Scholar]
- Hoebeke, J.; Haxhibeqiri, J.; Moons, B.; Eeghem, M.; Rossey, J.; Karaağaç, A.; Famaey, J. A Cloud-based Virtual Network Operator for Managing Multimodal LPWA Networks and Devices. In Proceedings of the CIoT2018, the 3rd Cloudification of the Internet of Things Conference, Paris, France, 2–4 July 2018; pp. 1–8. [Google Scholar]
- Moons, B.; Haxhibeqiri, J.; Eeghem, M.; Rossey, J.; Karaağaç, A.; Quattrocchi, S.; Aernouts, M.; Famaey, J.; Hoebeke, J. DEMO: A cloud-based virtual network operator for managing multimodal LPWANs and devices. In Proceedings of the CIoT2018, the 3rd Cloudification of the Internet of Things Conference, Paris, France, 2–4 July 2018; pp. 1–2. [Google Scholar]
- Duda, A.; Lone, Q.; Duble, E.; Rousseau, F.; Moerman, I.; Giannoulis, S. WiSH-WalT: A Framework for Controllable and Reproducible LoRa Testbeds. In Proceedings of the IEEE PIMRC, Bologna, Italy, 9–12 September 2018. [Google Scholar]
- Radcliffe, P.J.; Chavez, K.G.; Beckett, P.; Spangaro, J.; Jakob, C. Usability of LoRaWAN technology in a central business district. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Petäjäjärvi, J.; Mikhaylov, K.; Pettissalo, M.; Janhunen, J.; Iinatti, J. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. Int. J. Distrib. Sens. Netw. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Orfanidis, C.; Feeney, L.M.; Jacobsson, M.; Gunningberg, P. Investigating interference between LoRa and IEEE 802.15. 4g networks. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar]
- Reynders, B.; Meert, W.; Pollin, S. Range and coexistence analysis of long range unlicensed communication. In Proceedings of the 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–6. [Google Scholar]
- Haxhibeqiri, J.; Shahid, A.; Saelens, M.; Bauwens, J.; Jooris, B.; De Poorter, E.; Hoebeke, J. Sub-gigahertz inter-technology interference. How harmful is it for LoRa? In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–7. [Google Scholar]
- Lauridsen, M.; Vejlgaard, B.; Kovács, I.Z.; Nguyen, H.; Mogensen, P. Interference measurements in the European 868 MHz ISM band with focus on LoRa and SigFox. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Croce, D.; Gucciardo, M.; Mangione, S.; Santaromita, G.; Tinnirello, I. Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Commun. Lett. 2018, 22, 796–799. [Google Scholar] [CrossRef]
- Mikhaylov, K.; Petäjäjärvi, J.; Janhunen, J. On LoRaWAN scalability: Empirical evaluation of susceptibility to inter-network interference. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–6. [Google Scholar]
- Feltrin, L.; Buratti, C.; Vinciarelli, E.; De Bonis, R.; Verdone, R. LoRaWAN: Evaluation of Link-and System-Level Performance. IEEE Internet Things J. 2018, 5, 2249–2258. [Google Scholar] [CrossRef]
- Bankov, D.; Khorov, E.; Lyakhov, A. Mathematical model of LoRaWAN channel access. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–3. [Google Scholar]
- Bankov, D.; Khorov, E.; Lyakhov, A. Mathematical Model of LoRaWAN Channel Access with Capture Effect. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017. [Google Scholar]
- Georgiou, O.; Raza, U. Low power wide area network analysis: Can lora scale? IEEE Wirel. Commun. Lett. 2017, 6, 162–165. [Google Scholar] [CrossRef]
- Hoeller, A.; Souza, R.D.; López, O.L.A.; Alves, H.; de Noronha Neto, M.; Brante, G. Analysis and Performance Optimization of LoRa Networks With Time and Antenna Diversity. IEEE Access 2018, 6, 32820–32829. [Google Scholar] [CrossRef]
- Mahmood, A.; Sisinni, E.; Guntupalli, L.; Rondón, R.; Hassan, S.A.; Gidlund, M. Scalability Analysis of a LoRa Network under Imperfect Orthogonality. IEEE Trans. Ind. Inform. 2018. [Google Scholar] [CrossRef]
- Li, Z.; Zozor, S.; Drossier, J.M.; Varsier, N.; Lampin, Q. 2D Time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Haxhibeqiri, J.; Van den Abeele, F.; Moerman, I.; Hoebeke, J. LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors 2017, 17, 1193. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, R.B.; Kim, D.M.; Nielsen, J.J.; Popovski, P. Analysis of Latency and MAC-Layer Performance for Class A LoRaWAN. IEEE Wirel. Commun. Lett. 2017, 6, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, J.; El Rachkidy, N.; Guitton, A. Performance analysis of the on-the-air activation in LoRaWAN. In Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13–15 October 2016; pp. 1–7. [Google Scholar]
- Ferrari, P.; Flammini, A.; Rizzi, M.; Sisinni, E.; Gidlund, M. On the evaluation of LoRaWAN virtual channels orthogonality for dense distributed systems. In Proceedings of the 2017 IEEE International Workshop on Measurement and Networking (M&N), Naples, Italy, 27–29 September 2017; pp. 1–6. [Google Scholar]
- Casals, L.; Mir, B.; Vidal, R.; Gomez, C. Modeling the Energy Performance of LoRaWAN. Sensors 2017, 17, 2364. [Google Scholar] [CrossRef] [PubMed]
- San Cheong, P.; Bergs, J.; Hawinkel, C.; Famaey, J. Comparison of LoRaWAN classes and their power consumption. In Proceedings of the 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT), Leuven, Belgium, 14 November 2017; pp. 1–6. [Google Scholar]
- Ochoa, M.N.; Guizar, A.; Maman, M.; Duda, A. Evaluating LoRa energy efficiency for adaptive networks: From star to mesh topologies. In Proceedings of the Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar]
- Callebaut, G.; Ottoy, G.; Van der Perre, L. Cross-layer framework and optimization for efficient use of the energy budget of IoT Nodes. arXiv, 2018; arXiv:1806.08624. [Google Scholar]
- Imran, M. Energy harvesting in LoRaWAN: A cost analysis for the industry 4.0. IEEE Commun. Lett. 2018, 22, 2358–2361. [Google Scholar]
- Miller, R. Lora Security: Building a Secure Lora Solution; MWR Labs Whitepaper: London, UK, 2016. [Google Scholar]
- Butun, I.; Pereira, N.; Gidlund, M. Analysis of LoRaWAN v1. 1 security. In Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects, Los Angeles, CA, USA, 25 June 2018; p. 5. [Google Scholar]
- Aras, E.; Ramachandran, G.S.; Lawrence, P.; Hughes, D. Exploring the security vulnerabilities of lora. In Proceedings of the 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), Exeter, UK, 21–23 June 2017; pp. 1–6. [Google Scholar]
- Yang, X.; Karampatzakis, E.; Doerr, C.; Kuipers, F. Security Vulnerabilities in LoRaWAN. In Proceedings of the 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; pp. 129–140. [Google Scholar]
- Naoui, S.; Elhdhili, M.E.; Saidane, L.A. Enhancing the security of the IoT LoraWAN architecture. In Proceedings of the International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), Paris, France, 22–24 November 2016; pp. 1–7. [Google Scholar]
- Oniga, B.; Dadarlat, V.; De Poorter, E.; Munteanu, A. Analysis, design and implementation of secure LoRaWAN sensor networks. In Proceedings of the 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 7–9 September 2017; pp. 421–428. [Google Scholar]
- Tomasin, S.; Zulian, S.; Vangelista, L. Security analysis of lorawan join procedure for internet of things networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Sung, W.J.; Ahn, H.G.; Kim, J.B.; Choi, S.G. Protecting end-device from replay attack on LoRaWAN. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si, Korea, 11–14 February 2018; pp. 167–171. [Google Scholar]
- Feichtinger, K.; Nakano, Y.; Fukushima, K.; Kiyomoto, S. Enhancing the Security of Over-The-Air-Activation of LoRaWAN Using a Hybrid Cryptosystem. Int. J. Comput. Sci. Netw. Secur. 2018, 18, 1–9. [Google Scholar]
- Na, S.; Hwang, D.; Shin, W.; Kim, K.H. Scenario and countermeasure for replay attack using join request messages in LoRaWAN. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 718–720. [Google Scholar]
- Kim, J.; Song, J. A simple and efficient replay attack prevention scheme for LoRaWAN. In Proceedings of the 2017 the 7th International Conference on Communication and Network Security, Tokyo, Japan, 24–26 November 2017; pp. 32–36. [Google Scholar]
- Sanchez-Iborra, R.; Sánchez-Gómez, J.; Pérez, S.; Fernández, P.J.; Santa, J.; Hernández-Ramos, J.L.; Skarmeta, A.F. Enhancing LoRaWAN Security through a Lightweight and Authenticated Key Management Approach. Sensors 2018, 18, 1833. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.L.; Huang, Y.L.; Leu, F.Y.; You, I.; Huang, Y.L.; Tsai, C.H. AES-128 based Secure Low Power Communication for LoRaWAN IoT Environments. IEEE Access 2018, 6, 45325–45334. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Kohno, R. On the impact of downlink feedback on LoRa performance. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Capuzzo, M.; Magrin, D.; Zanella, A. Confirmed traffic in LoRaWAN: Pitfalls and countermeasures. In Proceedings of the 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri, Italy, 20–22 June 2018. [Google Scholar]
- Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of capacity and scalability of the LoRa low power wide area network technology. In Proceedings of the European Wireless 2016 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016; pp. 1–6. [Google Scholar]
- Reynders, B.; Meert, W.; Pollin, S. Power and spreading factor control in low power wide area networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Lim, J.T.; Han, Y. Spreading Factor Allocation for Massive Connectivity in LoRa Systems. IEEE Commun. Lett. 2018, 22, 800–803. [Google Scholar] [CrossRef]
- Cuomo, F.; Campo, M.; Caponi, A.; Bianchi, G.; Rossini, G.; Pisani, P. EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations. In Proceedings of the Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar]
- Li, S.; Raza, U.; Khan, A. How Agile is the Adaptive Data Rate Mechanism of LoRaWAN? arXiv, 2018; arXiv:1808.09286. [Google Scholar]
- Abdelfadeel, K.; Cionca, V.; Pesch, D. Poster: A Fair Adaptive Data Rate Algorithm for LoRaWAN. In Proceedings of the 2018 International Conference on Embedded Wireless Systems and Networks, EWSN, Madrid, Spain, 14–16 February 2018; pp. 169–170. [Google Scholar]
- Reynders, B.; Wang, Q.; Tuset-Peiro, P.; Vilajosana, X.; Pollin, S. Improving Reliability and Scalability of LoRaWANs Through Lightweight Scheduling. IEEE Internet Things J. 2018, 5, 1830–1842. [Google Scholar] [CrossRef]
- Oh, Y.; Lee, J.; Kim, C.K. TRILO: A Traffic Indication-Based Downlink Communication Protocol for LoRaWAN. Wirel. Commun. Mob. Comput. 2018, 2018, 6463097. [Google Scholar] [CrossRef]
- Rizzi, M.; Depari, A.; Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E. Synchronization Uncertainty Versus Power Efficiency in LoRaWAN Networks. IEEE Trans. Instrum. Meas. 2018. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Polonelli, T.; Brunelli, D.; Benini, L. Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach. In Proceedings of the 16th IEEE International Conference on Embedded and Ubiquitous Computing (EUC 2018), Bucharest, Romania, 24–26 October 2018; pp. 1–7. [Google Scholar]
- Centenaro, M.; Vangelista, L. Boosting network capacity in LoRaWAN through time-power multiplexing. In Proceedings of the IEEE PIMRC, Bologna, Italy, 9–12 September 2018; pp. 1–6. [Google Scholar]
- Almeida, R.; Oliveira, R.; Sousa, D.; Luis, M.; Senna, C.; Sargento, S. A Multi-Technology Opportunistic Platform for Environmental Data Gathering on Smart Cities. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar]
- Almeida, R.; Oliveira, R.; Luís, M.; Senna, C.; Sargento, S. A Multi-Technology Communication Platform for Urban Mobile Sensing. Sensors 2018, 18, 1184. [Google Scholar] [CrossRef] [PubMed]
- Kushalnagar, N.; Montenegro, G.; Schumacher, C. RFC 4919: Ipv6 over Low-Power Wireless Personal Area Networks (6lowpans): Overview; IETF: Fremont, CA, USA, 2007. [Google Scholar]
- Nieminen, J.; Savolainen, T.; Isomaki, M.; Patil, B.; Shelby, Z.; Gomez, C. RFC 7668-IPv6 over Bluetooth Low Energy; IETF: Fremont, CA, USA, 2015. [Google Scholar]
- Vilajosana, X.; Pister, K.; Watteyne, T. RFC 8180: Minimal IPv6 over the TSCH Mode of IEEE 802.15. 4e (6TiSCH) Configuration. Technical Report, BCP 210, RFC 8180. May 2017. Available online: https://www.rfc-editor.org/info/rfc8180 (accessed on 15 November 2018).
- Hui, J.; Thubert, P. RFC 6282: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks; IETF: Fremont, CA, USA, 2011. [Google Scholar]
- Minaburo, A.; Toutain, L.; Gomez, C.; Barthel, D. IETF DRAFT: LPWAN Static Context Header Compression (SCHC) and fragmentation for IPv6 and UDP; IETF: Fremont, CA, USA, 2018. [Google Scholar]
- Shelby, Z.; Hartke, K.; Bormann, C.; Frank, B. The Constrained Application Protocol (CoAP)(RFC 7252), 2014; IETF: Fremont, CA, USA, 2016. [Google Scholar]
- Ayoub, W.; Mroue, M.; Nouvel, F.; Samhat, A.E.; Prévotet, J.c. Towards IP over LPWANs technologies: LoRaWAN, DASH7, NB-IoT. In Proceedings of the 2018 Sixth International Conference on Digital Information, Networking, and Wireless Communications (DINWC), Beirut, Lebanon, 25–27 April 2018; pp. 43–47. [Google Scholar]
- Sanchez-Iborra, R.; Sánchez-Gómez, J.; Santa, J.; Fernández, P.J.; Skarmeta, A.F. IPv6 communications over LoRa for future IoV services. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 92–97. [Google Scholar]
- Weber, P.; Jäckle, D.; Rahusen, D.; Sikora, A. IPv6 over LoRaWAN™. In Proceedings of the 2016 3rd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Offenburg, Germany, 26–27 September 2016; pp. 75–79. [Google Scholar]
- Thielemans, S.; Bezunartea, M.; Steenhaut, K. Establishing transparent IPv6 communication on LoRa based low power wide area networks (LPWANS). In Proceedings of the Wireless Telecommunications Symposium (WTS), Chicago, IL, USA, 26–28 April 2017; pp. 1–6. [Google Scholar]
- Liao, C.H.; Zhu, G.; Kuwabara, D.; Suzuki, M.; Morikawa, H. Multi-hop LoRa networks enabled by concurrent transmission. IEEE Access 2017, 5, 21430–21446. [Google Scholar] [CrossRef]
- Sartori, B.; Thielemans, S.; Bezunartea, M.; Braeken, A.; Steenhaut, K. Enabling RPL multihop communications based on LoRa. In Proceedings of the Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar]
- Zhu, G.; Liao, C.H.; Suzuki, M.; Narusue, Y.; Morikawa, H. Evaluation of LoRa receiver performance under co-technology interference. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–7. [Google Scholar]
- Sisinni, E.; Carvalho, D.F.; Ferrari, P.; Flammini, A.; Silva, D.R.C.; Da Silva, I.M. Enhanced flexible LoRaWAN node for industrial IoT. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018. [Google Scholar]
- Mikhaylov, K.; Stusek, M.; Masek, P.; Petrov, V.; Petajajarvi, J.; Andreev, S.; Pokorny, J.; Hosek, J.; Pouttu, A.; Koucheryavy, Y. Multi-RAT LPWAN in Smart Cities: Trial of LoRaWAN and NB-IoT Integration. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Song, Y.; Lin, J.; Tang, M.; Dong, S. An Internet of energy things based on wireless LPWAN. Engineering 2017, 3, 460–466. [Google Scholar] [CrossRef]
- Latre, S.; Leroux, P.; Coenen, T.; Braem, B.; Ballon, P.; Demeester, P. City of things: An integrated and multi-technology testbed for IoT smart city experiments. In Proceedings of the 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; pp. 1–8. [Google Scholar]
- Taneja, M. 802.11 ah-LPWA interworking. In Proceedings of the 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, Korea, 6–10 June 2016; pp. 441–446. [Google Scholar]
- Famaey, J.; Berkvens, R.; Ergeerts, G.; De Poorter, E.; Van den Abeele, F.; Bolckmans, T.; Hoebeke, J.; Weyn, M. Flexible Multimodal Sub-Gigahertz Communication for Heterogeneous Internet of Things Applications. IEEE Commun. Mag. 2018, 56, 146–153. [Google Scholar] [CrossRef]
- Dönmez, T.C.; Nigussie, E. Security of LoRaWAN v1. 1 in Backward Compatibility Scenarios. Procedia Comput. Sci. 2018, 134, 51–58. [Google Scholar] [CrossRef]
Key | Description | Required in Joining Type | Generated from or Stored Beforehand | |
---|---|---|---|---|
OTAA | ABP | |||
LoRaWAN v1.1 | ||||
Keys needed before activation | ||||
NwkKey | Is used to calculate MIC for join-request packets, encrypt join-accept packets, and derive all NTW session keys. | Yes | No | Stored beforehand |
AppKey | Is used to derive AppSKey | Yes | No | Stored beforehand |
JSIntKey | Is used for MIC of rejoin-request and join accept packets | Yes | No | Generated from NwkKey and DevEUI |
JSEncKey | Is used to encrypt join-accept triggered by rejoin-request | Yes | No | Generated from NwkKey and DevEUI |
Keys needed after activation | ||||
FNwkSIntKey | Is used for calculate MIC of part of it of all uplink data packets | Yes | Yes | Generated from NwkKey and join-accept message |
SNwkSIntKey | Is used to verify MIC of all downlink data packets and calculate part of MIC of uplink packets | Yes | Yes | Generated from NwkKey and join-accept message |
NwkSEncKey | Is used to encrypt all downlink and uplink MAC packets | Yes | Yes | Generated from NwkKey and join-accept message |
AppSKey | Is used to encrypt/decrypt payload of data packets | Yes | Yes | Generated from AppKey and join-accept message |
Identifiers | ||||
JoinEUI | 64-bit globally unique application ID that identifies the join server | Yes | No | Stored beforehand |
DevEUI | 64-bit globally unique device ID by the network server | Yes | No | Stored beforehand |
DevAddr | 32-bit unique device address in the current network | Yes | Yes | Received by join-accept message |
LoRaWAN v1.0 | ||||
Keys needed before activation | ||||
AppKey | Is used to derive AppSKey and NwkSKey and to calculate MIC for join-request message. | Yes | No | Stored beforehand |
Keys needed after activation | ||||
NwkSKey | Is used to encrypt all MAC packets only and to calculate MIC of data packets | Yes | Yes | Generated from AppKey and join-accept message |
AppSKey | Is used to encrypt/decrypt payload of data packets | Yes | Yes | Generated from AppKey and join-accept message |
Identifiers | ||||
AppEUI | 64-bit globally unique application ID | Yes | No | Stored beforehand |
DevEUI | 64-bit globally unique device ID by the network server | Yes | No | Stored beforehand |
DevAddr | 32-bit unique device address in the current network | Yes | Yes | Received by join-accept message |
Study | Filed of Application | Studied LoRaWAN Performance Indicators | ||
---|---|---|---|---|
Path Loss | PLR | Power Consumption | ||
[12] | Medical | • | • | |
[13] | Medical | • | • | • |
[14] | Agriculture | |||
[15] | Agriculture | • | ||
[16] | Agriculture | • | ||
[17] | Agriculture | • | ||
[18] | Sensor Networks | • | • | |
[19] | Sensor Networks | • | ||
[20] | Traffic Monitoring | • | • | |
[23] | Localization | • | ||
[26] | Tele-metering | • | • | |
[28] | Smart Grid | |||
[24] | Smart City | • | • |
Study | Environment | Studied LoRaWAN Performance Indicators | Comments | |||
---|---|---|---|---|---|---|
Path Loss | PLR | Throughput | Delay | |||
[32] | Outdoor | Yes | Yes | No | No | @2 km distance using SF12 RSSI > −90 dBm; PLR = 12% |
[33] | Outdoor | Yes | No | No | No | @2 km distance coverage only using SF12 |
[34] | Outdoor | Yes | Yes | Yes | No | @2 km distance using SF12 PLR = 3% |
[18] | Outdoor-Indoor | Yes | Yes | No | No | @2 km distance RSSI > −100 dBm AXK rcp = 42% |
[35] | Indoor | Yes | Yes | Yes | Yes | @60 m distance with SF12 RSSI > −100 dBm PLR = 2% |
[36] | Indoor | Yes | Yes | No | No | @60 m distance with SF12 RSSI > −100 dBm PLR = 2% |
[37] | Indoor | Yes | No | No | No | @~32 m distance RSSI > −75 dBm |
[39] | Industrial | Yes | Yes | No | No | @~190 m distance RSSI > −100 dBm PLR < 1/% |
[24] | City Outdoor | Yes | No | No | No |
Study | Environment | Included Features | |||||
---|---|---|---|---|---|---|---|
Multi GW | Uplink Confirmed | Donlink Traffic | Downlink Confirmed Traffic | MAC Commands | Phy Model | ||
[40] | NS3 | Yes | Yes | Yes | Yes | No | All interference based |
[42] | NS3 | Yes | Yes | Yes | Yes | Yes | Power difference based |
[41] | Python | Yes | No | No | No | No | Power difference based |
[50] | Python | Yes | No | Yes | No | No | Power difference based |
[51] | Python | Yes | No | No | No | No | SIR based with log-normal channel fading |
[48] | NS3 | No | No | No | No | Yes | Received power based |
[53] | NS3 | Extend the LoRaWAN module in [48] with p-CSMA based MAC protocol | |||||
[24] | C++ | No | Yes | No | No | No | SNR based |
Study | Model | Considered Interference | |||||||
---|---|---|---|---|---|---|---|---|---|
Dominant Co-SF | Cumulative Co-SF | Dominant Inter-SF | Cumulative Inter-SF | Co and Inter-SF | Path Loss Model | Channel Fading | Other Interference | ||
[34] | Mathema. | No | No | No | No | No | None | No | No |
[69] | Mathema. | Yes | No | No | No | No | Yes | No | No |
[70] | Mathema. | Yes | No | No | No | No | Yes | No | No |
[71] | Mathema. | Yes | No | No | No | No | Yes | No | No |
[72] | Mathema. | Yes | Yes | No | No | No | Yes | No | No |
[25] | Mathema. | Yes | Yes | No | No | No | Yes | Yes | Yes |
[73] | Mathema. | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No |
[77] | Mathema. | Models only the network activation procedure | |||||||
[75] | Empir. | Yes | No | No | No | No | Yes | No | No |
[47] | Empir. | Yes | No | No | No | No | No | No | No |
[68] | Empir. | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
[40] | Simu. | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
Study | Model | Traffic Type Considered | ||
---|---|---|---|---|
Uplink Only | UL ACKed | Downlink | ||
[79] | Mathematical | Yes | Yes | No |
[80] | Empirical | Yes | No | No |
[82] | Simulation | Yes | Yes | No |
[83] | Empirical | Yes | No | No |
Study | Studied Security Aspects | Description |
---|---|---|
[87] | Data replay attacks for ABP nodes, Eavesdropping, Bit flipping attack. | Re-keying after every reset of counter overflow. Replace the counter with a nonce for AES counter mode. Add a MIC for application layer. |
[88] | Key management issues. | Add proxy nodes to drive a reputation system enhancing the LoRaWAN security |
[90] | Replay attack and unique DevNonce | Use of sequential DevNonce. |
[91] | Replay attack | In addition to DevNonce use RSSI to determine the reply attacks. |
[92] | ATAA join-procedure security | Use hybrid crypotosystem including asynchronous cryptosystem. Here the join-request packet is encrypted using AppKey. |
[93] | Replay attack | Masking the join-request packet by a unique token derived from the previous NetSKey. |
[94] | Replay attack | Two types of join-request packets. The initial ones packets are sent normally. The non-initial packet’s MIC is generated using previous NetSKey. |
[95] | Static Context of NetSKey and AppSKey | It involves session key update mechanism into LoRaWAN based on Ephemeral Diffie–Hellman Over COSE (EDHOC) algorithm. It is shown that the message sizze used in EDHOC case is around 40% than in DTLS case. |
[96] | Encryption | Secure Low Power Communication method (SeLPC) that reduces the AES encryption cycles in the end node is proposed. The encryption power is minimized up to encryption power up to 26.2%. |
Strengths | Weaknesses |
---|---|
- Large coverage in outdoor environments - Low power usage of end nodes - Low complexity of end nodes - Cheap end devices - Private network deployment opportunity - Suitable for monitoring applications | - Security issues - Reply and DoS attacks possible - Ntw security and App security terminates at different points in the network - ADR mechanism performs badly under heavy network load (increase power consumption of end-nodes, and collision rate in network) - Low scalability in DL due to duty cycle. |
Opportunities | Threats |
- Power usage can decrease further by modifying DL communication scheme - Low-power traffic synchronization possibilities. - Low-power traffic scheduling possibilities - CSMA schemes to avoid duty cycling in DL. | - Scalability issues in UL under heavy network load. - Interference from other technologies. - Not-suitable for two-way communication. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995. https://doi.org/10.3390/s18113995
Haxhibeqiri J, De Poorter E, Moerman I, Hoebeke J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors. 2018; 18(11):3995. https://doi.org/10.3390/s18113995
Chicago/Turabian StyleHaxhibeqiri, Jetmir, Eli De Poorter, Ingrid Moerman, and Jeroen Hoebeke. 2018. "A Survey of LoRaWAN for IoT: From Technology to Application" Sensors 18, no. 11: 3995. https://doi.org/10.3390/s18113995