Pitfall of the Strongest Cells in Static Random Access Memory Physical Unclonable Functions
Abstract
:1. Introduction
- (1)
- We first propose a method to recover the response using the helper data from a SRAM PUF with the distribution of the strongest cells. Many previous studies [15,22,23] theoretically hypothesized that the helper data would reduce the entropy and then lead to the risk of leakage of PUF responses. Our research experimentally proves this risk.
- (2)
- Our research reveals that the SRAM PUF based on repetition codes would generate a weak responses. The helper data generated using the weak responses reveal information about the PUFs’ responses.
- (3)
- We also propose ERFE with 4-bit error tolerant ability, which extracts cells’ sum value as the key.
2. Related Work
2.1. Structure of an SRAM Array
2.2. Structure of SRAM PUFs
2.3. Entropy of SRAM PUFs
3. Cloning SRAM Power-on Value
3.1. Weakness of SRAM PUFs Based on a Repetition Code
3.2. Effect of Strongest Cell Distribution in a SRAM Array on PUF Security
4. Proposed New Fuzzy Extractor
4.1. ERFE Architecture
Algorithm 1. Generation algorithm of Mask and AddOp |
Input: 11-bit responses of SRAM , , , …, Output: Mask, AddOp 1. initialize Mask, AddOp with zero 2. + …+ 3. if ) then 4. AddOp = 1; Mask =0; 5. else if ) then 6. AddOp =0; Mask = 0; 7. else if ) then 8. AddOp = 1; Mask = 0; 9. else if ) then 10. AddOp = 0; Mask = 0; 11. else then 12. AddOp = 0; Mask = 1; 13. end if 14. Return Mask, AddOp |
4.2. ERFE Security Analysis
4.3. Stability Analysis of ERFE
5. Experiment and Analysis
5.1. Experimental Set-Up
5.2. Characteristics of the Power-on Value of SRAMs
5.3. Weak Responses
5.4. Leakage of Strongest Cells
5.5. Results of ERFE
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- O’Neill, M. Insecurity by Design: Today’s IoT Device Security Problem. Engineering 2016, 2, 48–49. [Google Scholar] [CrossRef]
- Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisinia, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar]
- Cao, Y.; Zhang, L.; Chang, C.H.; Chen, S. A low-power hybrid RO PUF with improved thermal stability for lightweight applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 1143–1147. [Google Scholar]
- Cherkaoui, A.; Bossuet, L.; Seitz, L.; Selander, G.; Borgaonkar, R. New paradigms for access control in constrained environments. In Proceedings of the 2014 9th International Symposium on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 26–28 May 2014; pp. 1–4. [Google Scholar]
- Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical one-way functions. Science 2002, 297, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lim, D.; Gassend, B.; Suh, G.; Dijk, M.V.; Devadas, S. A technique to build a secret key in integrated circuits for identification and authentication applications. In Proceedings of the 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525), Honolulu, HI, USA, 17–19 June 2004; pp. 176–179. [Google Scholar] [Green Version]
- Lu, Z.; Li, D.; Liu, H.; Gong, M.; Liu, Z. An Anti-Electromagnetic Attack PUF Based on a Configurable Ring Oscillator for Wireless Sensor Networks. Sensors 2017, 17, 2118. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, D.E.; Burleson, W.P.; Fu, K. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 2009, 58, 1198–1210. [Google Scholar] [CrossRef]
- Kumar, S.S.; Guajardo, J.; Maes, R.; Schrijen, G.J.; Tuyls, P. The butterfly PUF protecting IP on every FPGA. In Proceedings of the 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, CA, USA, 9 June 2008; pp. 67–70. [Google Scholar]
- Liu, W.; Zhang, Z.; Li, M.; Liu, Z. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks. Sensors 2014, 14, 11542–11556. [Google Scholar] [CrossRef] [PubMed]
- Microsemi and Intrinsic-ID Deliver Integrated Security Solutions for Government Applications. Available online: https://www.intrinsic-id.com/microsemi-and-intrinsic-id-deliver-integrated-security-solutions-for-government-applications-2 (accessed on 30 March 2018).
- Intrinsic-ID. NXP Strengthens SmartMX2 Security Chips with PUF Anti-Cloning Technology. Available online: https://www.intrinsic-id.com/nxp-strengthens-smartmx2-security-chips-with-puf-anti-cloning-technology (accessed on 30 March 2018).
- Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2004; pp. 523–540. [Google Scholar]
- Bösch, C.; Guajardo, J.; Sadeghi, A.R.; Shokrollahi, J.; Tuyls, P. Efficient Helper Data Key Extractor on FPGAs. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 181–197. [Google Scholar]
- Koeberl, P.; Li, J.; Rajan, A.; Wu, W. Entropy loss in PUF-based key generation schemes: The repetition code pitfall. In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Arlington, VA, USA, 6–7 May 2014; pp. 44–49. [Google Scholar]
- Van Herrewege, A. Lightweight PUF-based Key and Random Number Generation. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2015. [Google Scholar]
- Rührmair, U.; Busch, H.; Katzenbeisser, S. Strong PUFs: Models, constructions, and security proofs. In Towards Hardware-Intrinsic Security; Springer: Berlin/Heidelberg, Germany, 2010; pp. 79–96. [Google Scholar]
- Gassend, B.; Lim, D.; Clarke, D.; Dijk, M.V.; Devadas, S. Identification and authentication of integrated circuits. Concurr. Comput. Pract. Exp. 2004, 16, 1077–1098. [Google Scholar] [CrossRef]
- Delvaux, J.; Verbauwhede, I. Side channel modeling attacks on 65nm arbiter PUFs exploiting CMOS device noise. In Proceedings of the 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Austin, TX, USA, 2–3 June 2013; pp. 137–142. [Google Scholar]
- Helfmeier, C.; Boit, C.; Nedospasov, D.; Seifert, J.-P. Cloning physically unclonable functions. In Proceedings of the 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Austin, TX, USA, 2–3 June 2013. [Google Scholar]
- Xiao, K.; Rahman, M.T.; Forte, D.; Huang, Y.; Su, M.; Tehranipoor, M. Bit selection algorithm suitable for high-volume production of SRAM-PUF. In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Arlington, VA, USA, 6–7 May 2014; pp. 101–106. [Google Scholar]
- Roel, M.A.E.S. Physically Unclonable Functions: Constructions, Properties and Applications. Ph.D. Thesis, University of KU Leuven, Leuven, Belgium, 2012. [Google Scholar]
- Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper data algorithms for PUF-based key generation: Overview and analysis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 889–902. [Google Scholar]
- Asenov, A. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 µm MOSFET’s: A 3-D “Atomistic” Simulation Study. IEEE Trans. Electron Devices 1998, 45, 2505–2513. [Google Scholar] [CrossRef]
- Claes, M.; van der Leest, V.; Braeken, A. Comparison of SRAM and FF PUF in 65nm technology. In Nordic Conference on Secure IT Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 47–64. [Google Scholar]
- Guajardo, J.; Kumar, S.S.; Schrijen, G.J.; Tuyls, P. Physical Unclonable Functions and Public-Key Crypto for FPGA IP Protection. In Proceedings of the 2007 International Conference on Field Programmable Logic and Applications, Amsterdam, The Netherlands, 27–29 August 2007; pp. 189–195. [Google Scholar]
0.15 | 0.1 | 0.05 | 0.02 | 0.01 | |
---|---|---|---|---|---|
0.12 | 0.022 | 9.8 × 10−4 | 1.1 × 10−5 | 3.5 × 10−7 |
Scheme | SRAM1 | SRAM2 | SRAM3 | |||
---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |
Intra distance | 0.5% | 11.7% | 0.2% | 13.4% | 0.4% | 7% |
Inter distance | 44% | 53% | 48% | 50% | 49% | 52.5% |
P | SRAM1 | SRAM2 | SRAM3 |
---|---|---|---|
0 | 34.18% | 40.72% | 44.14% |
0 << 0.1 | 8.98% | 4.30% | 3.42% |
0.1 << 0.3 | 1.56% | 1.56% | 1.27% |
0.3 << 0.7 | 3.91% | 4.79% | 4.10% |
0.7 << 0.9 | 2.34% | 0.98% | 1.27% |
0.9 < < 1 | 17.38% | 16.50% | 4.20% |
1 | 31.64% | 31.15% | 41.60% |
qy0 | SRAM1 | SRAM2 | SRAM3 |
---|---|---|---|
> 70% | 0 | 6% | 0 |
57.4% < ≤ 70% | 7.8% | 0 | 1.2% |
50% < ≤ 57.4% | 56.2% | 71% | 79.8% |
40% < ≤ 50% | 36% | 23% | 19% |
Ph | SRAM1 | SRAM2 | SRAM3 |
---|---|---|---|
0 | 16.54% | 19.61% | 19.49% |
0 << 0.1 | 30.15% | 26.59% | 29.53% |
0.1 << 0.3 | 3.92% | 3.43% | 4.17% |
0.3 << 0.7 | 8.58% | 8.7% | 8.82% |
0.7 << 0.9 | 4.78% | 1.96% | 1.35% |
0.9 << 1 | 25.86% | 30.39% | 22.06% |
1 | 10.17% | 9.32% | 14.58% |
SRAM1 | SRAM2 | SRAM3 | |
---|---|---|---|
23 | 14 | 22 | |
65.8% | 73.1% | 59.0% | |
74.1% | 79.0% | 66.7% | |
8.3% | 5.9% | 7.7% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, M.; Liu, H.; Min, R.; Liu, Z. Pitfall of the Strongest Cells in Static Random Access Memory Physical Unclonable Functions. Sensors 2018, 18, 1776. https://doi.org/10.3390/s18061776
Gong M, Liu H, Min R, Liu Z. Pitfall of the Strongest Cells in Static Random Access Memory Physical Unclonable Functions. Sensors. 2018; 18(6):1776. https://doi.org/10.3390/s18061776
Chicago/Turabian StyleGong, Mingyang, Hailong Liu, Run Min, and Zhenglin Liu. 2018. "Pitfall of the Strongest Cells in Static Random Access Memory Physical Unclonable Functions" Sensors 18, no. 6: 1776. https://doi.org/10.3390/s18061776
APA StyleGong, M., Liu, H., Min, R., & Liu, Z. (2018). Pitfall of the Strongest Cells in Static Random Access Memory Physical Unclonable Functions. Sensors, 18(6), 1776. https://doi.org/10.3390/s18061776