An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems
Abstract
:1. Introduction
2. Conventional E-Nose Systems
3. Neuromorphic Olfactory Systems
3.1. Mammalian-Inspired Olfactory Systems
3.2. Insect-Inspired Olfactory Systems
4. Potential Sensing Front-Ends for Neuromorphic Olfaction
4.1. MEMS Sensors
4.2. MOX Sensors
4.3. CNT Sensors
4.4. Front-End and Pre-Processing Integration
5. Conclusions and Future Research
Author Contributions
Conflicts of Interest
References
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Moncrieff, R. An instrument for measuring and classifying odors. J. Appl. Physiol. 1961, 16, 742–749. [Google Scholar] [PubMed]
- Gardner, J.; Cole, M.; Udrea, F. Cmos gas sensors and smart devices. In Proceedings of the 2002 IEEE Sensors, Orlando, FL, USA, 12–14 June 2002; pp. 721–726. [Google Scholar]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- James, D.; Scott, S.M.; Ali, Z.; O’Hare, W.T. Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Meier, D.C.; Raman, B.; Semancik, S. The life cycle of metal oxide sensors. Microsc. Microanal. 2008, 14, 230–231. [Google Scholar] [CrossRef]
- Gutierrez, J.; Horrillo, M.C. Advances in artificial olfaction: Sensors and applications. Talanta 2014, 124, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Smith, L.S. Neuromorphic systems: Past, present and future. In Brain Inspired Cognitive Systems 2008; Hussain, A., Aleksander, I., Smith, L.S., Barros, A.K., Chrisley, R., Cutsuridis, V., Eds.; Springer: New York, NY, USA, 2010; pp. 167–182. [Google Scholar]
- Liu, S.-C.; Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 2010, 20, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Firestein, S. How the olfactory system makes sense of scents. Nature 2001, 413, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Koickal, T.J.; Hamilton, A.; Tan, S.L.; Covington, J.A.; Gardner, J.W.; Pearce, T.C. Analog vlsi circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 60–73. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. Electronic Noses: Principles and Applications; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Pearce, T.C. Computational parallels between the biological olfactory pathway and its analogue the electronic nose: Part II. Sensor-based machine olfaction. Biosystems 1997, 41, 69–90. [Google Scholar] [CrossRef]
- Hopfield, J.J. Odor space and olfactory processing: Collective algorithms and neural implementation. Proc. Natl. Acad. Sci. USA 1999, 96, 12506–12511. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W. Review of conventional electronic noses and their possible application to the detection of explosives. In Electronic Noses & Sensors for The detection of Explosives; Gardner, J.W., Yinon, J., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 1–28. [Google Scholar]
- Tang, K.-T.; Goodman, R.M. Electronic olfaction System on a chip. In Proceedings of the SCI2001/ISAS2001 International Conference on Information Systems, Analysis and Synthesis, Orlando, FL, USA, 22–25 July 2001; p. 534. [Google Scholar]
- Tang, K.T.; Goodman, R.M. Towards a wearable electronic nose chip. In Proceedings of the Custom Integrated Circuits Conference, San Jose, CA, USA, 10–13 September 2006; pp. 273–276. [Google Scholar]
- Tang, K.T.; Chiu, S.W.; Pan, C.H.; Hsieh, H.Y.; Liang, Y.S.; Liu, S.C. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 2010, 10, 9179–9193. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.T.; Chiu, S.W.; Chang, M.F.; Hsieh, C.C.; Shyu, J.M. A wearable electronic nose soc for healthier living. In Proceedings of the 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, CA, USA, 10–12 November 2011; pp. 293–296. [Google Scholar]
- Chiu, S.W.; Tang, K.T. Towards a chemiresistive sensor-integrated electronic nose: A review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef] [PubMed]
- Raman, B.; Hertz, J.L.; Benkstein, K.D.; Semancik, S. Bioinspired methodology for artificial olfaction. Anal. Chem. 2008, 80, 8364–8371. [Google Scholar] [CrossRef] [PubMed]
- Far, A.B.; Flitti, F.; Guo, B.; Bermak, A. A bio-inspired pattern recognition system for tin-oxide gas sensor applications. IEEE Sens. J. 2009, 9, 713–722. [Google Scholar] [CrossRef]
- Raman, B.; Shenoy, R.; Meier, D.C.; Benkstein, K.D.; Semancik, S. A mems-based approach that uses temperature-dependent sensing responses to recognize chemical targets in untrained backgrounds. In Proceedings of the 2010 IEEE Sensor, Kona, HI, USA, 1–4 November 2010; pp. 1262–1266. [Google Scholar]
- Wyszynski, B.; Nakamoto, T. Linking biological and artificial olfaction: Biomimetic quartz crystal microbalance odor sensors. IEEJ Trans. Electr. Electron. Eng. 2009, 4, 334–338. [Google Scholar] [CrossRef]
- Tang, K.T.; Lin, Y.S.; Shyu, J.M. A local weighted nearest neighbor algorithm and a weighted and constrained least-squared method for mixed odor analysis by electronic nose systems. Sensors 2010, 10, 10467–10483. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.T.; Li, C.H.; Chiu, S.W. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications. Sensors 2011, 11, 4609–4621. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.I.; Jeong, G.M.; Kim, C. Classification of odorants in the vapor phase using composite features for a portable e-nose system. Sensors 2012, 12, 16182–16193. [Google Scholar] [CrossRef] [PubMed]
- Dentoni, L.; Capelli, L.; Sironi, S.; Del Rosso, R.; Zanetti, S.; Della Torre, M. Development of an electronic nose for environmental odour monitoring. Sensors 2012, 12, 14363–14381. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Lee, S.; Kim, J.H.; Kim, C.; Byun, Y.T.; Kim, H.S.; Lee, T. Pattern recognition for selective odor detection with gas sensor arrays. Sensors 2012, 12, 16262–16273. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.A.; Lansner, A. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system. Front. Neural Circuits 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Raman, B.; Stopfer, M.; Semancik, S. Mimicking biological design and computing principles in artificial olfaction. ACS Chem. Neurosci. 2011, 2, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Vanarse, A.; Osseiran, A.; Rassau, A. A review of current neuromorphic approaches for vision, auditory and olfactory sensors. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Sandström, M.; Proschinger, T.; Lansner, A. Fuzzy interval representation of olfactory stimulus concentration in an olfactory glomerulus model. BMC Neurosci. 2008, 9, P123. [Google Scholar] [CrossRef]
- Sandström, M.; Proschinger, T.; Lansner, A. A bulb model implementing fuzzy coding of odor concentration. In Proceedings of the 13th International Symposium on Olfaction and Electronic Nose, Brescia, Italy, 15–17 April 2009; pp. 159–162. [Google Scholar]
- Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [Google Scholar] [CrossRef]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Brandli, C.; Berner, R.; Minhao, Y.; Shih-Chii, L.; Delbruck, T. A 240 × 180 130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 2014, 49, 2333–2341. [Google Scholar] [CrossRef]
- Liu, S.C.; Schaik, A.V.; Mincti, B.A.; Delbruck, T. Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 2027–2030. [Google Scholar]
- Bermak, A.; Hassan, M.; Pan, X. Artificial olfactory systems. In Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine; Sawan, M., Ed.; Springer: New York, NY, USA, 2015; pp. 1–20. [Google Scholar]
- Persaud, K.C.; Marco, S.; Gutierrez-Galvez, A. Neuromorphic Olfaction; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Narusuye, K.; Kawai, F.; Miyachi, E.-I. Spike encoding of olfactory receptor cells. Neurosci. Res. 2003, 46, 407–413. [Google Scholar] [CrossRef]
- Martinelli, E.; Polese, D.; Dini, F.; Paolesse, R.; Filippini, D.; Lundstrom, I.; Di Natale, C. An investigation on the role of spike latency in an artificial olfactory system. Front. Neuroeng. 2011, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Pearce, T.C. Computational parallels between the biological olfactory pathway and its analogue the electronic nose: Part I. Biological olfaction. Biosystems 1997, 41, 43–67. [Google Scholar] [CrossRef]
- Chicca, E.; Schmuker, M.; Nawrot, M. Neuromorphic sensors, olfaction. In Encyclopedia of Computational Neuroscience; Jaeger, D., Jung, R., Eds.; Springer: New York, NY, USA, 2013; pp. 1–7. [Google Scholar]
- Koickal, T.J.; Hamilton, A.; Pearce, T.C.; Tan, S.-L.; Covington, J.A.; Gardner, J.W. Analog VLSI design of an adaptive neuromorphic chip for olfactory systems. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006), Island of Kos, Greece, 21–24 May 2006; pp. 4547–4550. [Google Scholar]
- Covington, J.A.; Tan, S.; Gardner, J.; Hamilton, A.; Koickal, T.; Pearce, T. Combined smart chemfet/resistive sensor array. In Proceedings of the 2003 IEEE Sensors, Toronto, ON, Canada, 22–24 October 2003; pp. 1120–1123. [Google Scholar]
- Koickal, T.J.; Hamilton, A.; Tan, S.L.; Covington, J.; Gardner, J.W.; Pearce, T. Smart interface circuit to ameliorate loss of measurement range in chemical microsensor arrays. In Proceedings of the 2005 IEEE Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 16–19 May 2005; pp. 548–550. [Google Scholar]
- Pearce, T.C.; Fulvi-Mari, C.; Covington, J.A.; Tan, F.S.; Gardner, J.W.; Koickal, T.J.; Hamilton, A. Silicon-based neuromorphic implementation of the olfactory pathway. In Proceedings of the 2nd International IEEE EMBS Conference Neural Engineering, Arlington, VA, USA, 16–19 March 2005; pp. 307–312. [Google Scholar]
- Ng, K.T.; Boussaid, F.; Bermak, A. A cmos single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1569–1580. [Google Scholar] [CrossRef]
- Hung Tat, C.; Kwan Ting, N.; Bermak, A.; Law, M.K.; Martinez, D. Spike latency coding in biologically inspired microelectronic nose. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 160–168. [Google Scholar]
- Yamani, J.A.; Boussaid, F.; Bermak, A.; Martinez, D. Glomerular latency coding in artificial olfaction. Front. Neuroeng. 2011, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Yamani, J.H.J.A.; Boussaid, F.; Bermak, A.; Martinez, D. Bio-inspired gas recognition based on the organization of the olfactory pathway. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems, Seoul, Korea, 20–23 May 2012; pp. 1391–1394. [Google Scholar]
- Hassan, M.; Bermak, A. Biologically inspired feature rank codes for hardware friendly gas identification with the array of gas sensors. IEEE Sens. J. 2016, 16, 5776–5784. [Google Scholar] [CrossRef]
- Ait Si Ali, A.; Djelouat, H.; Amira, A.; Bensaali, F.; Benammar, M.; Bermak, A. Electronic nose system on the zynq soc platform. Microprocess. Microsyst. 2017, 53, 145–156. [Google Scholar] [CrossRef]
- Hassan, M.; Umar, M.; Bermak, A. Computationally efficient weighted binary decision codes for gas identification with array of gas sensors. IEEE Sens. J. 2017, 17, 487–497. [Google Scholar] [CrossRef]
- Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J.P.; Beccherelli, R.; Perera, A.; Pearce, T.C.; Verschure, P.F.M.J.; Persaud, K. A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation. Microsyst. Technol. 2013, 20, 729–742. [Google Scholar] [CrossRef]
- Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction: Electronic Nose Technology; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Persaud, K.C. Biomimetic olfactory sensors. IEEE Sens. J. 2012, 12, 3108–3112. [Google Scholar] [CrossRef]
- Beyeler, M.; Stefanini, F.; Proske, H.; Galizia, G.; Chicca, E. Exploring olfactory sensory networks: Simulations and hardware emulation. In Proceedings of the 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS), Paphos, Cyprus, 3–5 November 2010; pp. 270–273. [Google Scholar]
- Schmuker, M.; Schneider, G. Processing and classification of chemical data inspired by insect olfaction. Proc. Natl. Acad. Sci. USA 2007, 104, 20285–20289. [Google Scholar] [CrossRef] [PubMed]
- Hausler, C.; Nawrot, M.P.; Schmuker, M. A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee. In Proceedings of the 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER), Cancun, Mexico, 27 April–1 May 2011; pp. 198–202. [Google Scholar]
- Kasap, B.; Schmuker, M. Improving odor classification through self-organized lateral inhibition in a spiking olfaction-inspired network. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 219–222. [Google Scholar]
- Pfeil, T.; Grübl, A.; Jeltsch, S.; Müller, E.; Müller, P.; Petrovici, M.A.; Schmuker, M.; Brüderle, D.; Schemmel, J.; Meier, K. Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Schmuker, M.; Pfeil, T.; Nawrot, M.P. A neuromorphic network for generic multivariate data classification. Proc. Natl. Acad. Sci. USA 2014, 111, 2081–2086. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Schmuker, M.; Berna, A.Z.; Trowell, S.; Nowotny, T. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system. Bioinspir. Biomim. 2016, 11, 026002. [Google Scholar] [CrossRef] [PubMed]
- Imam, N.; Cleland, T.A.; Manohar, R.; Merolla, P.A.; Arthur, J.V.; Akopyan, F.; Modha, D.S. Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core. Front. Neurosci. 2012, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Rivera, R.; Pearce, T.C. Attractor-based pattern classification in a spiking fpga implementation of the olfactory bulb. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; pp. 593–599. [Google Scholar]
- Huang, P.C.; Rabaey, J.M. A bio-inspired analog gas sensing front end. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, PP, 1–13. [Google Scholar] [CrossRef]
- Bernabei, M.; Persaud, K.C.; Pantalei, S.; Zampetti, E.; Beccherelli, R. Large-scale chemical sensor array testing biological olfaction concepts. IEEE Sens. J. 2012, 12, 3174–3183. [Google Scholar] [CrossRef]
- Martinelli, E.; Dini, F.; Pennazza, G.; Canosa, M.; D’Amico, A.; Di Natale, C. A novel bio-inspired digital signal processing method for chemical sensor arrays. In Biologically Inspired Signal Processing for Chemical Sensing; Gutiérrez, A., Marco, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 109–120. [Google Scholar]
- Abdel-Aty-Zohdy, H.S.; Allen, J.N.; Ewing, R.L. Spiking neural network e-nose classifier chip. In Proceedings of the IEEE 2010 National Aerospace and Electronics Conference (NAECON), Fairborn, OH, USA, 14–16 July 2010; pp. 374–378. [Google Scholar]
- Hsieh, H.Y.; Tang, K.T. Vlsi implementation of a bio-inspired olfactory spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.H.; Hsieh, H.Y.; Tang, K.T. An analog multilayer perceptron neural network for a portable electronic nose. Sensors 2012, 13, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Chicca, E.; Schmuker, M.; Nawrot, M.P. Neuromorphic Sensors, Olfaction; Springer: Berlin, Germany, 2014. [Google Scholar]
- Raman, B.; Sun, P.A.; Gutierrez-Galvez, A.; Gutierrez-Osuna, R. Processing of chemical sensor arrays with a biologically inspired model of olfactory coding. IEEE Trans. Neural Netw. 2006, 17, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Pearce, T.C.; Karout, S.; Racz, Z.; Capurro, A.; Gardner, J.W.; Cole, M. Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex. Front. Neurosci. 2013, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.-Q.; Meng, Q.-H.; Qi, P.-F.; Zeng, M.; Liu, Y.-J. Signal processing inspired from the olfactory bulb for electronic noses. Meas. Sci. Technol. 2017, 28, 015105. [Google Scholar] [CrossRef]
- Yuan, C.-L.; Lin, S.-W. Detection of organic chemical vapors with a mwnts-polymer array chemiresistive sensor. Mater. Sci.-Pol. 2014, 32, 50–58. [Google Scholar] [CrossRef]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Benkstein, K.D.; Raman, B.; Montgomery, C.B.; Martinez, C.J.; Semancik, S. Microsensors in dynamic backgrounds: Toward real-time breath monitoring. IEEE Sens. J. 2010, 10, 137–144. [Google Scholar] [CrossRef]
- Chandaran, U.D.; Halim, Z.A.; Sidek, O.; Darah, I.; Mohamad-Salleh, J.; Mohamad, N.; Rashidah, A.R. Electronic nose to detect sulphate reducing bacteria which is an agent of corrosion. In Proceedings of the 2010 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 11–12 May 2010; pp. 1–4. [Google Scholar]
- Padmashri, P.A.; Aniroodha, P.V. Nanoparticle films for gas sensing applications: Greener approaches. J. Environ. Res. Dev. 2014, 9, 196. [Google Scholar]
- Baschirotto, A.; Capone, S.; D’Amico, A.; Di Natale, C.; Ferragina, V.; Ferri, G.; Francioso, L.; Grassi, M.; Guerrini, N.; Malcovati, P.; et al. A portable integrated wide-range gas sensing system with smart A/D front-end. Sens. Actuators B Chem. 2008, 130, 164–174. [Google Scholar] [CrossRef]
- Brunet, E.; Maier, T.; Mutinati, G.C.; Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W. Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuators B Chem. 2012, 165, 110–118. [Google Scholar] [CrossRef]
- Wang, L.C.; Tang, K.T.; Chiu, S.W.; Yang, S.R.; Kuo, C.T. A bio-inspired two-layer multiple-walled carbon nanotube-polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose. Biosens. Bioelectron. 2011, 26, 4301–4307. [Google Scholar] [CrossRef] [PubMed]
- Kea-Tiong, T.; Shih-Wen, C.; Meng-Fan, C.; Chih-Cheng, H.; Jyuo-Min, S. A low-power electronic nose signal-processing chip for a portable artificial olfaction system. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 380–390. [Google Scholar]
- Wang, L.-C.; Su, T.-H.; Ho, C.-L.; Yang, S.-R.; Chiu, S.-W.; Kuo, H.-W.; Tang, K.-T. A bio-inspired two-layer sensing structure of polypeptide and multiple-walled carbon nanotube to sense small molecular gases. Sensors 2015, 15, 5390–5401. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.C.; Tang, K.T.; Teng, I.J.; Kuo, C.T.; Ho, C.L.; Kuo, H.W.; Su, T.H.; Yang, S.R.; Shi, G.N.; Chang, C.P. A single-walled carbon nanotube network gas sensing device. Sensors 2011, 11, 7763–7772. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Guha, P.K.; Udrea, F.; Covington, J.A. Cmos interfacing for integrated gas sensors: A review. IEEE Sens. J. 2010, 10, 1833–1848. [Google Scholar] [CrossRef]
- Raman, B.; Ito, I.; Stopfer, M. Bilateral olfaction: Two is better than one for navigation. Genome Biol. 2008, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Bermak, A.; Ali, A.A.S.; Amira, A. Gas identification with spike codes in wireless electronic nose: A potential application for smart green buildings. In Proceedings of the 2015 SAI Intelligent Systems Conference (Intellisys), London, UK, 10–11 November 2015; pp. 457–462. [Google Scholar]
- Pearce, T.C.; Karout, S.; Capurro, A.; Rácz, Z.; Cole, M.; Gardner, J.W. Robust ratiometric infochemical communication in a neuromorphic “synthetic moth”. In Proceedings of the Second International Conference Biomimetic and Biohybrid Systems: Living Machines 2013, London, UK, 29 July–2 August 2013; Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 204–215. [Google Scholar]
- De Araujo, I.E.; Rolls, E.T.; Kringelbach, M.L.; McGlone, F.; Phillips, N. Taste-olfactory convergence and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 2003, 18, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Covington, J.A.; Gardner, J.W. Combined electronic nose and tongue for a flavour sensing system. Sens. Actuators B Chem. 2011, 156, 832–839. [Google Scholar] [CrossRef]
- Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: A review. Anal. Chim. Acta 2001, 426, 217–226. [Google Scholar] [CrossRef]
- Del Valle, M. Bioinspired sensor systems. Sensors 2011, 11, 10180–10186. [Google Scholar] [CrossRef] [PubMed]
- Maamor, H.N.; Rashid, F.N.A.; Zakaria, N.Z.I.; Zakaria, A.; Kamarudin, L.M.; Jaafar, M.N.; Shakaff, A.Y.M.; Subari, N.; Yusuf, N.; Ismail, S.W.M.; et al. Bio-inspired taste assessment of pure and adulterated honey using multi-sensing technique. In Proceedings of the 2014 2nd International Conference on Electronic Design (ICED), Penang, Malaysia, 19–21 August 2014; pp. 270–274. [Google Scholar]
Published Date | Authors | Contribution | Reference |
---|---|---|---|
July 2006 | Raman et al. | Biologically inspired olfactory coding model | [80] |
January 2007 | Koickal et al. | aVLSI adaptive neuromorphic olfaction chip | [16] |
May 2007 | Guerrero-Rivera and Pearce | Olfactory bulb model using spiking FPGA | [72] |
October 2007 | Schmuker and Schneider | Three-layered processing and classification model of insect olfactory system | [65] |
November 2010 | Beyeler et al. | Software simulation and hardware model of the AL of the Drosophila melanogaster | [64] |
May 2011 | Hausler et al. | Deep learning SNN based on the olfactory system of the honeybee | [66] |
July 2011 | Ng et al. | A CMOS gas recognition chip based on 2D spatio-temporal spike signatures | [54] |
January 2012 | Yamani et al. | Extension of [54] by implementing glomerular latency coding | [56] |
June 2012 | Imam et al. | Emulation of mammalian olfactory glomerular layer using digital neuromorphic chip | [71] |
July 2012 | Hsieh and Tang | SNN chip based on subthreshold oscillation and onset latency for odour classification | [77] |
November 2012 | Bernabei et al. | Large-scale biomimetic sensor array (NEUROCHEM project) | [74] |
July 2013 | Pearce et al. | Neuromorphic spiking model of the insect antennal lobe macro glomerular complex | [81] |
November 2013 | Kasap and Schmuker | Unsupervised learning based on iSTDP in a SNN inspired by the insect AL | [67] |
December 2013 | Schmuker et al. | Implementation of a SNN described in [65] on Spikey, a neuromorphic hardware system | [69] |
January 2016 | Diamond et al. | Implementation of bioinspired SNN described in [69] for classification of real-time sensor data | [70] |
November 2016 | Jing et al. | Bioinspired signal processing method for e-noses based on olfactory bulb model | [82] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanarse, A.; Osseiran, A.; Rassau, A. An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems. Sensors 2017, 17, 2591. https://doi.org/10.3390/s17112591
Vanarse A, Osseiran A, Rassau A. An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems. Sensors. 2017; 17(11):2591. https://doi.org/10.3390/s17112591
Chicago/Turabian StyleVanarse, Anup, Adam Osseiran, and Alexander Rassau. 2017. "An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems" Sensors 17, no. 11: 2591. https://doi.org/10.3390/s17112591
APA StyleVanarse, A., Osseiran, A., & Rassau, A. (2017). An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems. Sensors, 17(11), 2591. https://doi.org/10.3390/s17112591