Glucose Biosensors: An Overview of Use in Clinical Practice
Abstract
:1. Introduction
2. Basic Principles of Glucose Biosensors
3. Historical Perspectives of Glucose Biosensors
3.1. First-generation of Glucose Biosensors
3.2. Second-generation of Glucose Biosensors
3.3. Third-generation of Glucose Biosensors
4. Continuous Glucose Monitoring Systems (CGMS)
5. Non-invasive Glucose Monitoring System
6. Glucose Biosensors for Pont-of-Care Testing (POCT)
7. Analytical Performance Validation of Glucose Biosensors
7.1. Precision
7.1.1. Repeatability
7.1.2. Intermediate precision
7.2. Accuracy
7.3. Linearity
7.4. User performance
7.5. Interferences
8. Conclusions
Acknowledgments
References
- Cowie, C.C.; Rust, K.F.; Byrd-Holt, D.D.; Gregg, E.W.; Ford, E.S.; Geiss, L.S.; Bainbridge, K.E.; Fradkin, J.E. Prevalence of diabetes and high risk for diabetes using hemoglobin A1c criteria in the U.S. population in 1988–2006. Diabetes Care 2010, 33, 562–568. [Google Scholar]
- Narayan, K.M.; Boyle, J.P.; Geiss, L.S.; Saaddine, J.B.; Thompson, T.J. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care 2006, 29, 2114–2116. [Google Scholar]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract 2010, 87, 4–14. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–69. [Google Scholar]
- Poolsup, N.; Suksomboon, N.; Rattanasookchit, S. Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update. Diabetes Technol. Ther 2009, 11, 775–784. [Google Scholar]
- Murata, G.H.; Shah, J.H.; Hoffman, R.M.; Wendel, C.S.; Adam, K.D.; Solvas, P.A.; Bokhari, S.U.; Duckworth, W.C. Intensified blood glucose monitoring improves glycemic control in stable, insulin-treated veterans with type 2 diabetes: the Diabetes Outcomes in Veterans Study (DOVES). Diabetes Care 2003, 26, 1759–1763. [Google Scholar]
- Skeie, S.; Kristensen, G.B.; Carlsen, S.; Sandberg, S. Self-Monitoring of Blood Glucose in Type 1 Diabetes Patients with Insufficient Metabolic Control: Focused Self-Monitoring of Blood Glucose Intervention Can Lower Glycated Hemoglobin A1C. J. Diabetes Sci. Technol 2009, 3, 83–88. [Google Scholar]
- Tunis, S.L.; Minshall, M.E. Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US. Curr. Med. Res. Opin 2010, 26, 151–162. [Google Scholar]
- Boutati, E.I.; Raptis, S.A. Self-monitoring of blood glucose as part of the integral care of type 2 diabetes. Diabetes Care 2009, 32(Suppl. 2), S205–210. [Google Scholar]
- Jovanovic, L.G. Using meal-based self-monitoring of blood glucose as a tool to improve outcomes in pregnancy complicated by diabetes. Endocr. Pract 2008, 14, 239–247. [Google Scholar]
- O’Kane, M.J.; Pickup, J. Self-monitoring of blood glucose in diabetes: is it worth it? Ann. Clin. Biochem 2009, 46, 273–282. [Google Scholar]
- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med 1993, 329, 977–986. [Google Scholar]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med 2008, 359, 1577–1589. [Google Scholar]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar]
- American Diabetes Association. Standards of medical care in diabetes--2010. Diabetes Care 2010, 33, S11–61. [Google Scholar]
- Newman, J.D.; Turner, A.P. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron 2005, 20, 2435–2453. [Google Scholar]
- Turner, A.P. Biosensors--sense and sensitivity. Science 2000, 290, 1315–1317. [Google Scholar]
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci 1962, 102, 29–45. [Google Scholar]
- Updike, S.J.; Hicks, G.P. The enzyme electrode. Nature 1967, 214, 986–988. [Google Scholar]
- Hiratsuka, A.; Fujisawa, K.; Muguruma, H. Amperometric biosensor based on glucose dehydrogenase and plasma-polymerized thin films. Anal. Sci 2008, 24, 483–486. [Google Scholar]
- Chambers, J.P.; Arulanandam, B.P.; Matta, L.L.; Weis, A.; Valdes, J.J. Biosensor recognition elements. Curr. Issues Mol. Biol 2008, 10, 1–12. [Google Scholar]
- Iqbal, S.S.; Mayo, M.W.; Bruno, J.G.; Bronk, B.V.; Batt, C.A.; Chambers, J.P. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron 2000, 15, 549–578. [Google Scholar]
- Newman, J.D.; Turner, A.P. Biosensors: Principles and practice; Portland Press: London, UK, 1992; Volume 27, pp. 147–159. [Google Scholar]
- Habermuller, K.; Mosbach, M.; Schuhmann, W. Electron-transfer mechanisms in amperometric biosensors. Fresenius J. Anal. Chem 2000, 366, 560–568. [Google Scholar]
- Pearson, J.E.; Gill, A.; Vadgama, P. Analytical aspects of biosensors. Ann. Clin. Biochem 2000, 37 Pt 2, 119–145. [Google Scholar]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron 2001, 16, 121–131. [Google Scholar]
- Turner, A.P.; Chen, B.; Piletsky, S.A. In vitro diagnostics in diabetes: meeting the challenge. Clin. Chem 1999, 45, 1596–1601. [Google Scholar]
- Heller, A. Amperometric biosensors. Curr. Opin. Biotechnol 1996, 7, 50–54. [Google Scholar]
- Price, C.P. Point-of-care testing in diabetes mellitus. Clin. Chem. Lab. Med 2003, 41, 1213–1219. [Google Scholar]
- D’Costa, E.J.; Higgins, I.J.; Turner, A.P. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors 1986, 2, 71–87. [Google Scholar]
- Slein, M.W. D-glucose: Determination with hexokinase and glucose-6-phosphate dehydrogenase; Academic Press: New York, NY, USA, 1963; p. 117. [Google Scholar]
- Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev 2008, 108, 2482–2505. [Google Scholar]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose oxidase--an overview. Biotechnol. Adv 2009, 27, 489–501. [Google Scholar]
- Weibel, M.K.; Bright, H.J. The glucose oxidase mechanism. Interpretation of the pH dependence. J. Biol. Chem 1971, 246, 2734–2744. [Google Scholar]
- Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455. [Google Scholar]
- Jin, W.; Wollenberger, U.; Scheller, F.W. PQQ as redox shuttle for quinoprotein glucose dehydrogenase. Biol. Chem 1998, 379, 1207–1211. [Google Scholar]
- Zayats, M.; Katz, E.; Baron, R.; Willner, I. Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized au nanoparticles yields an electrically contacted biocatalyst. J. Am. Chem. Soc 2005, 127, 12400–12406. [Google Scholar]
- Raitman, O.A.; Patolsky, F.; Katz, E.; Willner, I. Electrical contacting of glucose dehydrogenase by the reconstitution of a pyrroloquinoline quinone-functionalized polyaniline film associated with an Au-electrode: an in situ electrochemical SPR study. Chem. Commun. (Camb.) 2002, 1936–1937. [Google Scholar]
- Bartlett, P.N.; Whitaker, R.G. Strategies for the development of amperometric enzyme electrodes. Biosensors 1987, 3, 359–379. [Google Scholar]
- Bartlett, P.N.; Simon, E.; Toh, C.S. Modified electrodes for NADH oxidation and dehydrogenase-based biosensors. Bioelectrochemistry 2002, 56, 117–122. [Google Scholar]
- Gorton, L.; Dominguez, E. Electrocatalytic oxidation of NAD(P) H at mediator-modified electrodes. J. Biotechnol 2002, 82, 371–392. [Google Scholar]
- Drury, M.I.; Timoney, F.J.; Delaney, P. DEXTROSTIX--A RAPID METHOD OF ESTIMATING BLOOD GLUCOSE LEVELS. J. Ir. Med. Assoc 1965, 56, 52–53. [Google Scholar]
- Jensen, M.S. Clinical tests with the dextrostix. A new method for rapid blood sugar determination. Ugeskr. Laeger 1965, 127, 709–712. [Google Scholar]
- Korp, W. A NEW RAPID BLOOD-SUGAR DETERMINATION AT BEDSIDE (DEXTROSTIX). Wien. Med. Wochenschr 1965, 115, 435–437. [Google Scholar]
- Schmidt, V. Blood sugar determination using the dextrostix. Ugesk. Laeger 1965, 127, 706–709. [Google Scholar]
- Updike, S.J.; Hicks, G.P. Reagentless substrate analysis with immobilized enzymes. Science 1967, 158, 270–272. [Google Scholar]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev 2008, 108, 814–825. [Google Scholar]
- Liu, J.; Wang, J. Improved design for the glucose biosensor. Food technology and biotechnology 2001, 39, 55–58. [Google Scholar]
- Cass, A.E.; Davis, G.; Francis, G.D.; Hill, H.A.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.; Turner, A.P. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem 1984, 56, 667–671. [Google Scholar]
- Frew, J.E.; Hill, H.A. Electrochemical biosensors. Anal. Chem 1987, 59, 933A–944A. [Google Scholar]
- Shichiri, M.; Kawamori, R.; Yamasaki, Y.; Hakui, N.; Abe, H. Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 1982, 2, 1129–1131. [Google Scholar]
- Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron 2002, 17, 441–456. [Google Scholar]
- Frew, J.E.; Hill, H.A. Electron-transfer biosensors. Philos. Trans. R. Soc. Lond. B. Biol. Sci 1987, 316, 95–106. [Google Scholar]
- Ballarin, B.; Cassani, M.C.; Mazzoni, R.; Scavetta, E.; Tonelli, D. Enzyme electrodes based on sono-gel containing ferrocenyl compounds. Biosens. Bioelectron 2007, 22, 1317–1322. [Google Scholar]
- Di Gleria, K.; Hill, H.A.; McNeil, C.J.; Green, M.J. Homogeneous ferrocene-mediated amperometric immunoassay. Anal. Chem 1986, 58, 1203–1205. [Google Scholar]
- Williams, D.L.; Doig, A.R., Jr.; Korosi, A. Electrochemical-enzymatic analysis of blood glucose and lactate. Anal. Chem 1970, 42, 118–121. [Google Scholar]
- Hu, J. The evolution of commercialized glucose sensors in China. Biosens. Bioelectron 2009, 24, 1083–1089. [Google Scholar]
- Hilditch, P.I.; Green, M.J. Disposable electrochemical biosensors. Analyst 1991, 116, 1217–1220. [Google Scholar]
- Matthews, D.R.; Holman, R.R.; Bown, E.; Steemson, J.; Watson, A.; Hughes, S.; Scott, D. Pen-sized digital 30-second blood glucose meter. Lancet 1987, 1, 778–779. [Google Scholar]
- Murray, R.W.; Ewing, A.G.; Durst, R.A. Chemically modified electrodes. Molecular design for electroanalysis. Anal. Chem 1987, 59, 379A–390A. [Google Scholar]
- Zhang, W.; Li, G. Third-generation biosensors based on the direct electron transfer of proteins. Anal. Sci 2004, 20, 603–609. [Google Scholar]
- Gregg, B.A.; Heller, A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal. Chem 1990, 62, 258–263. [Google Scholar]
- Lin, Y.; Yantasee, W.; Wang, J. Carbon nanotubes (CNTs) for the development of electrochemical biosensors. Front. Biosci 2005, 10, 492–505. [Google Scholar]
- Riklin, A.; Katz, E.; Willner, I.; Stocker, A.; Buckmann, A.F. Improving enzyme-electrode contacts by redox modification of cofactors. Nature 1995, 376, 672–675. [Google Scholar]
- Khan, G.F.; Ohwa, M.; Wernet, W. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal. Chem 1996, 68, 2939–2945. [Google Scholar]
- Palmisano, F.; Zambonin, P.G.; Centonze, D.; Quinto, M. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. Anal. Chem 2002, 74, 5913–5918. [Google Scholar]
- Azevedo, A.M.; Martins, V.C.; Prazeres, D.M.; Vojinovic, V.; Cabral, J.M.; Fonseca, L.P. Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol. Annu. Rev 2003, 9, 199–247. [Google Scholar]
- Rubio Retama, J.; Lopez Cabarcos, E.; Mecerreyes, D.; Lopez-Ruiz, B. Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosens. Bioelectron 2004, 20, 1111–1117. [Google Scholar]
- Vidal, J.C.; Garcia, E.; Castillo, J.R. Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance. Biosens. Bioelectron 1998, 13, 371–382. [Google Scholar]
- Wu, J.; Qu, Y. Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode. Anal. Bioanal. Chem 2006, 385, 1330–1335. [Google Scholar]
- Albisser, A.M.; Leibel, B.S.; Ewart, T.G.; Davidovac, Z.; Botz, C.K.; Zingg, W.; Schipper, H.; Gander, R. Clinical control of diabetes by the artificial pancreas. Diabetes 1974, 23, 397–404. [Google Scholar]
- Bindra, D.S.; Zhang, Y.; Wilson, G.S.; Sternberg, R.; Thevenot, D.R.; Moatti, D.; Reach, G. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem 1991, 63, 1692–1696. [Google Scholar]
- Csoregi, E.; Schmidtke, D.W.; Heller, A. Design and optimization of a selective subcutaneously implantable glucose electrode based on “wired” glucose oxidase. Anal. Chem 1995, 67, 1240–1244. [Google Scholar]
- Henry, C. Getting under the skin: implantable glucose sensors. Anal. Chem 1998, 70, 594A–598A. [Google Scholar]
- Schmidtke, D.W.; Freeland, A.C.; Heller, A.; Bonnecaze, R.T. Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proc. Natl. Acad. Sci. USA 1998, 95, 294–299. [Google Scholar]
- Rebrin, K.; Steil, G.M. Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Ther 2000, 2, 461–472. [Google Scholar]
- Gross, T.M.; Bode, B.W.; Einhorn, D.; Kayne, D.M.; Reed, J.H.; White, N.H.; Mastrototaro, J.J. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol. Ther 2000, 2, 49–56. [Google Scholar]
- Cox, M. An overview of continuous glucose monitoring systems. J. Pediatr. Health Care 2009, 23, 344–347. [Google Scholar]
- Hashiguchi, Y.; Sakakida, M.; Nishida, K.; Uemura, T.; Kajiwara, K.; Shichiri, M. Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method. Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients. Diabetes Care 1994, 17, 387–396. [Google Scholar]
- Poscia, A.; Mascini, M.; Moscone, D.; Luzzana, M.; Caramenti, G.; Cremonesi, P.; Valgimigli, F.; Bongiovanni, C.; Varalli, M. A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens. Bioelectron 2003, 18, 891–898. [Google Scholar]
- Wentholt, I.M.; Vollebregt, M.A.; Hart, A.A.; Hoekstra, J.B.; DeVries, J.H. Comparison of a needle-type and a microdialysis continuous glucose monitor in type 1 diabetic patients. Diabetes Care 2005, 28, 2871–2876. [Google Scholar]
- Nielsen, J.K.; Freckmann, G.; Kapitza, C.; Ocvirk, G.; Koelker, K.H.; Kamecke, U.; Gillen, R.; Amann-Zalan, I.; Jendrike, N.; Christiansen, J.S.; Koschinsky, T.; Heinemann, L. Glucose monitoring by microdialysis: performance in a multicentre study. Diabet. Med 2009, 26, 714–721. [Google Scholar]
- Tamborlane, W.V.; Beck, R.W.; Bode, B.W.; Buckingham, B.; Chase, H.P.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.A.; Gilliam, L.K.; Hirsch, I.B.; Huang, E.S.; Kollman, C.; Kowalski, A.J.; Laffel, L.; Lawrence, J.M.; Lee, J.; Mauras, N.; O’Grady, M.; Ruedy, K.J.; Tansey, M.; Tsalikian, E.; Weinzimer, S.; Wilson, D.M.; Wolpert, H.; Wysocki, T.; Xing, D. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med 2008, 359, 1464–1476. [Google Scholar]
- Bode, B.; Beck, R.W.; Xing, D.; Gilliam, L.; Hirsch, I.; Kollman, C.; Laffel, L.; Ruedy, K.J.; Tamborlane, W.V.; Weinzimer, S.; Wolpert, H. Sustained benefit of continuous glucose monitoring on A1C, glucose profiles, and hypoglycemia in adults with type 1 diabetes. Diabetes Care 2009, 32, 2047–2049. [Google Scholar]
- Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care 2009, 32, 1378–1383. [Google Scholar]
- Montagnana, M.; Lippi, G.; Guidi, G.C. Continuous glucose monitoring and type 1 diabetes. N. Engl. J. Med 2009, 360, 190, author reply 191–192.. [Google Scholar]
- Klonoff, D.C. Noninvasive blood glucose monitoring. Diabetes Care 1997, 20, 433–437. [Google Scholar]
- Oliver, N.S.; Toumazou, C.; Cass, A.E.; Johnston, D.G. Glucose sensors: a review of current and emerging technology. Diabet. Med 2009, 26, 197–210. [Google Scholar]
- Rabinovitch, B.; March, W.F.; Adams, R.L. Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations. Diabetes Care 1982, 5, 254–258. [Google Scholar]
- Goetz, M.J., Jr.; Cote, G.L.; Erckens, R.; March, W.; Motamedi, M. Application of a multivariate technique to Raman spectra for quantification of body chemicals. IEEE Trans. Biomed. Eng 1995, 42, 728–731. [Google Scholar]
- Gabriely, I.; Wozniak, R.; Mevorach, M.; Kaplan, J.; Aharon, Y.; Shamoon, H. Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia. Diabetes Care 1999, 22, 2026–2032. [Google Scholar]
- MacKenzie, H.A.; Ashton, H.S.; Spiers, S.; Shen, Y.; Freeborn, S.S.; Hannigan, J.; Lindberg, J.; Rae, P. Advances in photoacoustic noninvasive glucose testing. Clin. Chem 1999, 45, 1587–1595. [Google Scholar]
- Larin, K.V.; Eledrisi, M.S.; Motamedi, M.; Esenaliev, R.O. Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects. Diabetes Care 2002, 25, 2263–2267. [Google Scholar]
- D’Orazio, P.; Burnett, R.W.; Fogh-Andersen, N.; Jacobs, E.; Kuwa, K.; Kulpmann, W.R.; Larsson, L.; Lewenstam, A.; Maas, A.H.; Mager, G.; Naskalski, J.W.; Okorodudu, A.O. Approved IFCC recommendation on reporting results for blood glucose: International Federation of Clinical Chemistry and Laboratory Medicine Scientific Division, Working Group on Selective Electrodes and Point-of-Care Testing (IFCC-SD-WG-SEPOCT). Clin. Chem. Lab. Med 2006, 44, 1486–1490. [Google Scholar]
- Montagnana, M.; Caputo, M.; Giavarina, D.; Lippi, G. Overview on self-monitoring of blood glucose. Clin. Chim. Acta 2009, 402, 7–13. [Google Scholar]
- Goldstein, D.E.; Little, R.R.; Lorenz, R.A.; Malone, J.I.; Nathan, D.; Peterson, C.M.; Sacks, D.B. Tests of glycemia in diabetes. Diabetes Care 2004, 27, 1761–1773. [Google Scholar]
- American Diabetes Association. American Diabetes Association: clinical practice recommendations 1996. Diabetes Care 1996, 19, S1–118. [Google Scholar]
- International Organization for Standardization. In vitro diagnostic test systems-Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus; International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- Clinical and Laboratory Standards Institute. Evaluation of the linearity of quantitative measurement procedures; A statistical approach; Approved guideline; Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2003. [Google Scholar]
- Clinical and Laboratory Standards Institute. Interference testing in clinical chemistry; Approved guideline; Clinical and Laboratory Standard Institute: Wayne, NY, USA, 2005. [Google Scholar]
- Heinemann, L. Measurement quality of blood glucose meters: is there a need for an institution with an unbiased view? J. Diabetes Sci. Technol 2007, 1, 178–180. [Google Scholar]
- Barreau, P.B.; Buttery, J.E. Effect of hematocrit concentration on blood glucose value determined on Glucometer II. Diabetes Care 1988, 11, 116–118. [Google Scholar]
- Rao, L.V.; Jakubiak, F.; Sidwell, J.S.; Winkelman, J.W.; Snyder, M.L. Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin. Chim. Acta 2005, 356, 178–183. [Google Scholar]
- Tang, Z.; Lee, J.H.; Louie, R.F.; Kost, G.J. Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch. Pathol. Lab. Med 2000, 124, 1135–1140. [Google Scholar]
- Palmisano, F.; Zambonin, P.G. Ascorbic acid interferences in hydrogen peroxide detecting biosensors based on electrochemically immobilized enzymes. Analytical chemistry 1993, 65, 2690–2692. [Google Scholar]
- Vaidya, R.; Atanasov, P.; Wikins, E. Effect of interference on amperometric glucose biosensors with cellulose acetate membrane. Electroanalysis 2005, 6, 677–682. [Google Scholar]
- Schleis, T.G. Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy 2007, 27, 1313–1321. [Google Scholar]
- Flore, K.M.; Delanghe, J.R. Analytical interferences in point-of-care testing glucometers by icodextrin and its metabolites: an overview. Perit. Dial. Int 2009, 29, 377–383. [Google Scholar]
- Janssen, W.; Harff, G.; Caers, M.; Schellekens, A. Positive interference of icodextrin metabolites in some enzymatic glucose methods. Clin. Chem 1998, 44, 2379–2380. [Google Scholar]
- Oyibo, S.O.; Pritchard, G.M.; McLay, L.; James, E.; Laing, I.; Gokal, R.; Boulton, A.J. Blood glucose overestimation in diabetic patients on continuous ambulatory peritoneal dialysis for end-stage renal disease. Diabet. Med 2002, 19, 693–696. [Google Scholar]
- Tang, Z.; Du, X.; Louie, R.F.; Kost, G.J. Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer. Am. J. Clin. Pathol 2000, 113, 75–86. [Google Scholar]
- Cartier, L.J.; Leclerc, P.; Pouliot, M.; Nadeau, L.; Turcotte, G.; Fruteau-de-Laclos, B. Toxic levels of acetaminophen produce a major positive interference on Glucometer Elite and Accu-chek Advantage glucose meters. Clin. Chem 1998, 44, 893–894. [Google Scholar]
- Solnica, B.; Naskalski, J.W.; Sieradzki, J. Analytical performance of glucometers used for routine glucose self-monitoring of diabetic patients. Clin. Chim. Acta 2003, 331, 29–35. [Google Scholar]
- Vesper, H.W.; Myers, G.L. Approaches for improving glucose monitor measurements for self-monitoring of blood glucose: from measurement harmonization to external quality assessment programs. J. Diabetes Sci. Technol 2007, 1, 153–157. [Google Scholar]
Year | Event |
---|---|
1962 | First description of a biosensor by Clark and Lyons |
1967 | First practical enzyme electrode by Updike and Hicks |
1973 | Glucose enzyme electrode based on detection of hydrogen peroxide [36] |
1975 | Relaunch of first commercial biosensor, i.e., YSI analyzer |
1976 | First bedside artificial pancreas (Miles) |
1982 | First needle-type enzyme electrode for subcutaneous implantation by Shichiri |
1984 | First ferrocene mediated amperometric glucose biosensor by Cass |
1987 | Launch of the MediSense ExacTech blood glucose biosensor |
1999 | Launch of a commercial in vivo glucose sensor (MiniMed) |
2000 | Introduction of a wearable noninvasive glucose monitor (GlucoWatch) |
Manufacturer | Brand | Assay method | Minimal sample volume (uL) | Test time (second) | Assay range (mg/dL) | Hematocrit range (%) | Memory (results) |
---|---|---|---|---|---|---|---|
Abbott | FreeStyle Freedom Lite | GDH-PQQ | 0.3 | −5 | 20–500 | 15–65 | 400 |
AgaMatrix | WaveSense KeyNote | GOD | 0.5 | 4 | 20–600 | 20–60 | 300 |
Arkray | Glucocard X-meter | GDH | 0.3 | 5 | 10–600 | 30–52 | 360 |
Bayer | Ascensia Contour | GDH-FAD | 0.6 | 5 | 10–600 | 0–70 | 480 |
Bionime | Rightest GM300 | GOD | 1.4 | 8 | 20–600 | 30–55 | 300 |
Diabestic Supply of Suncoast | Advocate Redi-Code* | GOD | 0.7 | 7 | 20–600 | 20–60 | 450 |
Diagnostic Devices | Prodigy Autocode | GOD | 0.6 | 6 | 20–600 | 20–60 | 450 |
LifeScan | OneTouch UltraLink | GOD | 1.0 | 5 | 20–600 | 30–55 | 500 |
Nova Biomedical | Nova Max | GOD | 0.3 | 5 | 20–600 | 25–60 | 400 |
Roche | Accu-Chek Aviva | GDH-PQQ | 0.6 | 5 | 10–600 | 20–70 | 500 |
Percentage of samples (%) | Glucose concentration (mg/dL) |
---|---|
5 | <50 |
15 | 50–80 |
20 | 80–120 |
30 | 120–200 |
15 | 201–300 |
10 | 301–400 |
5 | >400 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yoo, E.-H.; Lee, S.-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4558-4576. https://doi.org/10.3390/s100504558
Yoo E-H, Lee S-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors. 2010; 10(5):4558-4576. https://doi.org/10.3390/s100504558
Chicago/Turabian StyleYoo, Eun-Hyung, and Soo-Youn Lee. 2010. "Glucose Biosensors: An Overview of Use in Clinical Practice" Sensors 10, no. 5: 4558-4576. https://doi.org/10.3390/s100504558