Rural Settlement Subdivision by Using Landscape Metrics as Spatial Contextual Information
Abstract
:1. Introduction
- (1)
- Create a two-level hierarchical segmentation (a finer scale and a coarser scale) using Gaofen 2 (GF-2) data to identify different LULC features. For example, detailed LULC features such as rooftops, houses, roads, and farmlands can be identified from the finer scale, and LULC feature aggregations such as settlement communities, forests, and agriculture fields can be identified from the coarser scale.
- (2)
- Derive a land cover map at the finer scale using traditional spectral and geometrical features. Furthermore, use this map to enable landscape contextual information extraction by building a vertical connection between subobjects (that is, the segments of detailed LULC features) and superobjects (the segments that they are located within).
- (3)
- Assign landscape metric information to subobjects, and undertake a second classification incorporating only multi-scale landscape contextual information.
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Methodology
2.3.1. Classification Schema
2.3.2. Two-Level Segmentation
2.3.3. Preliminary Classification
2.3.4. Vertical Connection and Landscape Metrics Calculation
2.3.5. Discrimination between New-Fashioned and Old-Fashioned Rural Settlements
2.3.6. Comparison Method: Top-Down Hierarchical Classification
2.3.7. Accuracy Assessment and Comparison
3. Results
3.1. Two-Level Segmentation and Preliminary Classification Result
3.2. Accuracy Assessment on the Final Map
3.3. Accuracy Comparison
4. Discussion
4.1. Multi-Scale Contextual Information and Rural Settlement Subdivision
4.2. Landscape Metrics and Spatial Contextual Information
4.3. Related Methods and Innovation
4.4. Scale Effect and Boundary Problem
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goodin, D.G.; Anibas, K.L.; Bezymennyi, M. Mapping land cover and land use from object-based classification: An example from a complex agricultural landscape. Int. J. Remote Sens. 2015, 36, 4702–4723. [Google Scholar] [CrossRef]
- Okubo, S.; Muhamad, D.; Harashina, K.; Takeuchi, K.; Umezaki, M. Land use/cover classification of a complex agricultural landscape using single-dated very high spatial resolution satellite-sensed imagery. Can. J. Remote Sens. 2010, 36, 722–736. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Long, H.; Cui, W. Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: Evidence from Dancheng County, Henan Province. Land Use Policy 2014, 39, 188–198. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Wu, X.; Dong, G. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: Implications for building a new countryside in coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Li, X.; Chen, Y. Building new countryside in China: A geographical perspective. Land Use Policy 2010, 27, 457–470. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Cheng, Y.; Zheng, B.; Lu, Z. The impact of rural out-migration on arable land use intensity: Evidence from mountain areas in Guangdong, China. Land Use Policy 2016, 59, 569–579. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Wu, J. Where to put the next billion people. Nature 2016, 537, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Kit, O.; Lüdeke, M.; Reckien, D. Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Appl. Geogr. 2012, 32, 660–667. [Google Scholar] [CrossRef]
- Kuffer, M.; Barros, J.; Sliuzas, R.V. The development of a morphological unplanned settlement index using very-high-resolution (VHR) imagery. Comput. Environ. Urban Syst. 2014, 48, 138–152. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Van der Werff, H.M.A.; Van der Meer, F.D. Shape-based classification of spectrally identical objects. ISPRS J. Photogramm. Remote Sens. 2008, 63, 251–258. [Google Scholar] [CrossRef]
- Han, N.; Wang, K.; Yu, L.; Zhang, X. Integration of texture and landscape features into object-based classification for delineating Torreya using IKONOS imagery. Int. J. Remote Sens. 2012, 33, 2003–2033. [Google Scholar] [CrossRef]
- Hay, G.J.; Niemann, K.O.; McLean, G.F. An object-specific image-texture analysis of H-resolution forest imagery. Remote Sens. Environ. 1996, 55, 108–122. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Tso, B.; Olsen, R.C. A contextual classification scheme based on MRF model with improved parameter estimation and multiscale fuzzy line process. Remote Sens. Environ. 2005, 97, 127–136. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A review of remote sensing image classification techniques: The role of Spatio-contextual information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Binaghi, E.; Gallo, I.; Pepe, M. A cognitive pyramid for contextual classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2906–2922. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 631–651. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Feng, J.; Cao, Z.; Pi, Y. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels. Remote Sens. 2014, 6, 7158–7181. [Google Scholar] [CrossRef]
- Hermosilla, T.; Ruiz, L.A.; Recio, J.A.; Estornell, J. Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sens. 2011, 3, 1188–1210. [Google Scholar] [CrossRef]
- Lin, L.; Meng, Y.; Yue, A.; Yuan, Y.; Liu, X.; Chen, J.; Zhang, M.; Chen, J. A spatio-temporal model for forest fire detection using HJ-IRS satellite data. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Liu, Q.; Huang, C. Cloud and snow discrimination for CCD images of HJ-1A/B constellation based on spectral signature and spatio-temporal context. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A. A hierarchical spatio-temporal Markov model for improved flood mapping using multi-temporal X-band SAR data. Remote Sens. 2010, 2, 2240–2258. [Google Scholar] [CrossRef]
- Alioscha-Perez, M.; Sahli, H. Efficient learning of spatial patterns with multi-scale conditional random fields for region-based classification. Remote Sens. 2014, 6, 6727–6764. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1, 45–54. [Google Scholar] [CrossRef]
- Malhi, Y.; Román-Cuesta, R.M. Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sens. Environ. 2008, 112, 2074–2087. [Google Scholar] [CrossRef]
- Ma, L.; Wu, D.; Deng, J.; Wang, K.; Li, J.; Gu, Q.; Dai, Y. Discrimination of residential and industrial buildings using LiDAR data and an effective spatial-neighbor algorithm in a typical urban industrial park. Eur. J. Remote Sens. 2015, 48, 1–15. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Gan, M.; Zhang, J.; Teng, L.; Wang, K.; Shen, Z.; Zhang, L. Discrimination of Settlement and Industrial Area Using Landscape Metrics in Rural Region. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Hodgson, M.E. What size window for image classification? A cognitive perspective. Photogramm. Eng. Remote Sens. 1998, 64, 797–807. [Google Scholar]
- Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef]
- Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from Quickbird data in Rio de Janeiro using an object based approach. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 531–553. [Google Scholar]
- Johnson, B.; Xie, Z. Classifying a high resolution image of an urban area using super-object information. ISPRS J. Photogramm. Remote Sens. 2013, 83, 40–49. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126–1142. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Xu, X.; Ge, H.; Liu, L.; Gao, G.; Sun, S. Exploring the synergistic use of multi-scale image object metrics for land-use/land-cover mapping using an object-based approach. Int. J. Remote Sens. 2015, 36, 3544–3562. [Google Scholar] [CrossRef]
- Tongxiang Bureau of Statistics. Tongxiang Statistical Year Books; China Statistical Press: Beijing, China, 2012; pp. 83–92. [Google Scholar]
- Kong, F.; Li, X.; Wang, H.; Xie, D.; Li, X.; Bai, Y. Land Cover Classification Based on Fused Data from GF-1 and MODIS NDVI Time Series. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, C.; Wang, S.; Liu, W.; Tian, Y. Estimation of Building Density with the Integrated Use of GF-1 PMS and Radarsat-2 Data. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Belgiu, M.; Drǎguţ, L. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2010, 66, 247–259. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. Available online: http://www.cms.waikato.ac.nz/~ml/publications/2009/weka_update.pdf (accessed on 15 May 2017).
- Fan, R.E.; Chen, P.H.; Lin, C.J. Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 2005, 6, 1889–1918. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available online: http//www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 10 May 2016).
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Measure To Roc, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Witharana, C.; Lynch, H.J. An object-based image analysis approach for detecting penguin guano in very high spatial resolution satellite images. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Sawaya, K. Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Turner, M.; Gardner, R.; O’Neill, R. Landscape Ecology in Theory and Practice; Springer: New York, NY, USA, 2001. [Google Scholar]
- Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M.A. Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2013, 82, 125–137. [Google Scholar] [CrossRef]
- Hu, F.; Yang, W.; Chen, J.; Sun, H. Tile-level annotation of satellite images using multi-level max-margin discriminative random field. Remote Sens. 2013, 5, 2275–2291. [Google Scholar] [CrossRef]
- Lienou, M.; Maitre, H.; Datcu, M. Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation. IEEE Geosci. Remote Sens. Lett. 2010, 7, 28–32. [Google Scholar] [CrossRef]
- Zhao, B.; Zhong, Y.; Zhang, L. A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 73–85. [Google Scholar] [CrossRef]
- Moser, B.; Jaeger, J.A.G.; Tappeiner, U.; Tasser, E.; Eiselt, B. Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landsc. Ecol. 2007, 22, 447–459. [Google Scholar] [CrossRef]
Level 1 | Level 2 | Level 3 |
---|---|---|
Non-artificial | Water bodies | |
Vegetation | ||
Bare soil | ||
Artificial | Low-albedo rooftops | New-fashioned rural settlements |
Old-fashioned rural settlements | ||
High-albedo impervious surface | Concrete | |
Greenhouse | ||
Industrial warehouse | ||
Asphalt |
Level | Classification Objects | Classification Attributes | Classification Method |
---|---|---|---|
Level 1 | Artificial and non-artificial surface | Brightness Layer mean Max. diff. Standard deviation Compactness Shape index Density NDVI | SVM RBF with optimal parameter obtained from cross-validation |
Level 2 | Subdivide artificial surface into three subclasses, i.e., low-albedo rooftops, high-albedo impervious surface, industrial warehouse and asphalt | ||
Subdivide non-artificial surface into three subclasses, i.e., water bodies, vegetation, bare soil | |||
Level 3 | Subdivide high-albedo impervious surface into two subclasses, i.e., concrete, greenhouse | ||
Subdivide low-albedo rooftops into two subclasses, i.e., new-fashioned and old-fashioned rural settlements | Landscape metrics acted as contextual information |
Reference Class | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water Bodies | Bare Soil | Old-Fashioned Settlement | Asphalt | Vegetation | Industrial Warehouse | Concrete | New-Fashioned Settlement | Greenhouse | Sum | ||
Predicted class | Water bodies | 103 | 0 | 1 | 0 | 7 | 0 | 2 | 0 | 0 | 113 |
Bare soil | 0 | 73 | 0 | 0 | 10 | 0 | 9 | 1 | 0 | 93 | |
Old-fashioned settlement | 15 | 9 | 257 | 1 | 11 | 0 | 10 | 5 | 5 | 313 | |
Asphalt | 0 | 0 | 7 | 49 | 2 | 0 | 2 | 3 | 0 | 63 | |
Vegetation | 4 | 2 | 0 | 0 | 301 | 0 | 5 | 0 | 0 | 312 | |
Industrial warehouse | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 50 | |
Concrete | 0 | 9 | 0 | 0 | 14 | 3 | 194 | 0 | 0 | 220 | |
New-fashioned settlement | 3 | 3 | 13 | 3 | 9 | 1 | 11 | 225 | 3 | 271 | |
Greenhouse | 0 | 5 | 0 | 0 | 1 | 1 | 7 | 0 | 71 | 85 | |
Sum | 125 | 101 | 278 | 53 | 355 | 55 | 240 | 234 | 79 | ||
PA | 82.40% | 72.28% | 92.45% | 92.45% | 84.79% | 90.91% | 80.83% | 96.15% | 89.87% | ||
UA | 91.15% | 78.49% | 82.11% | 77.78% | 96.47% | 100.00% | 88.18% | 83.03% | 83.53% | ||
Overall accuracy | 87.04% |
Methods | Multi-Scale Contextual Information Classification | Top-Down Hierarchical Classification | |||
---|---|---|---|---|---|
Reference Class | |||||
Old-Fashioned | New-Fashioned | Old-Fashioned | New-Fashioned | ||
Predicted Class | Old-fashioned | 257 | 5 | 234 | 51 |
New-fashioned | 13 | 225 | 36 | 179 | |
Evaluation Criteria | Precision | 98.09% | 94.54% | 82.11% | 83.26% |
Recall | 95.19% | 97.83% | 86.67% | 77.83% | |
Accuracy | 96.40% | 82.60% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Wu, B.; Weston, M.V.; Zhang, J.; Gan, M.; Zhu, J.; Deng, J.; Wang, K.; Teng, L. Rural Settlement Subdivision by Using Landscape Metrics as Spatial Contextual Information. Remote Sens. 2017, 9, 486. https://doi.org/10.3390/rs9050486
Zheng X, Wu B, Weston MV, Zhang J, Gan M, Zhu J, Deng J, Wang K, Teng L. Rural Settlement Subdivision by Using Landscape Metrics as Spatial Contextual Information. Remote Sensing. 2017; 9(5):486. https://doi.org/10.3390/rs9050486
Chicago/Turabian StyleZheng, Xinyu, Bowen Wu, Melanie Valerie Weston, Jing Zhang, Muye Gan, Jinxia Zhu, Jinsong Deng, Ke Wang, and Longmei Teng. 2017. "Rural Settlement Subdivision by Using Landscape Metrics as Spatial Contextual Information" Remote Sensing 9, no. 5: 486. https://doi.org/10.3390/rs9050486
APA StyleZheng, X., Wu, B., Weston, M. V., Zhang, J., Gan, M., Zhu, J., Deng, J., Wang, K., & Teng, L. (2017). Rural Settlement Subdivision by Using Landscape Metrics as Spatial Contextual Information. Remote Sensing, 9(5), 486. https://doi.org/10.3390/rs9050486