A Method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data
Abstract
:1. Introduction
2. Data and Study Area
2.1. Site Description
2.2. Data
2.2.1. In Situ Data
2.2.2. Satellite Data
3. Methods
3.1. Ground Aerodynamic Roughness Length
3.2. BRDF Parameters with Ross-Li Model
3.3. NDHD, NDVI and HDVI
4. Results
4.1. Simulated Reflectance in Red and NIR Band
4.2. Relationship between NDVI/HDVI and z0m
4.3. Regional-Scale z0m
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef]
- Liou, Y.A.; Galantowicz, J.F.; England, A.W. A land surface process/radio brightness model with coupled heat and moisture transport for prairie grassland. J. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1848–1859. [Google Scholar] [CrossRef]
- Hryama, T.; Sugita, M.; Kotoda, K. Regional roughness parameters and momentum fluxes over a complex area. J. Appl. Meteorol. 1996, 35, 2179–2190. [Google Scholar] [CrossRef]
- Marticorena, B.; Kardous, M.; Bergametti, G.; Callot, Y.; Chazette, P.; Khatteli, H.; Le Hégarat-Mascle, S.; Maillé, M.; Rajot, J.; Vidal-Madjar, D.; et al. Surface and aerodynamic roughness in arid and semiarid areas and their relation to radar backscatter coefficient. J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. The micrometeorology of crops. In Principles of Environmental Physics; Edward Arnold: London, UK, 1973; pp. 190–215. [Google Scholar]
- Brutsaert, W. Evaporation into the Atmosphere. Theory, History, and Applications; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Borak, J.S.; Jasinski, M.F.; Crago, R.D. Time series vegetation aerodynamic roughness fields estimated from MODIS observations. Agric. For. Meteorol. 2005, 135, 252–268. [Google Scholar] [CrossRef]
- Maurer, K.D.; Hardiman, B.S.; Vogel, C.S.; Bohrer, G. Canopy-structure effects on surface roughness parameters: Observations in a Great Lakes mixed-deciduous forest. Agric. For. Meteorol. 2013, 177, 24–34. [Google Scholar] [CrossRef]
- Jasinski, M.F.; Crago, R.D. Estimation of vegetation aerodynamic roughness of natural regions using frontal area density determined from satellite imagery. Agric. For. Meteorol. 1999, 94, 65–77. [Google Scholar] [CrossRef]
- Hasager, C.B.; Jensen, N.O. Surface-flux aggregation in heterogeneous terrain. Q. J. R. Meteorol. Soc. 1999, 125, 2075–2102. [Google Scholar] [CrossRef]
- Menenti, M.; Ritchie, J.C.; Humes, K.S.; Parry, R.; Pachepsky, Y.; Gimenez, D.; Leguizamon, S. Estimation of aerodynamic roughness at various spatial scales. In Scaling up in Hydrology Using Remote Sensing; John Wiley and Sons: Chichester, UK, 1996; Volume 272. [Google Scholar]
- Menenti, M.; Ritchie, J.C. Estimation of effective aerodynamic roughness of walnut gulch watershed with laser altimeter measurements. Water Resour. Res. 1994, 30, 1329–1337. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces. Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Raupach, M.R. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound. Layer Meteorol. 1994, 71, 211–216. [Google Scholar] [CrossRef]
- Schaudt, K.; Dickinson, R.E. An approach to deriving roughness length and zero-plane displacement height from satellite data, prototyped with BOREAS data. Agric. For. Meteorol. 2000, 104, 143–155. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Menenti, M. Estimation of area roughness length for momentum using remote sensing data and measurements in field. Sci. Atmos. Sin. 1999, 23, 632–640. [Google Scholar]
- Gupta, R.K.; Prasad, T.S.; Vijayan, D. Estimation of roughness length and sensible heat flux from WiFS and NOAA AVHRR data. Adv. Space Res. 2002, 29, 33–38. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.P.; Zhang, Q. Retrieval of aerodynamic roughness length character over sparse vegetation region. Acta Ecol. Sin. 2010, 30, 2819–2827. [Google Scholar]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Gao, F.; Schaaf, C.B.; Strahler, A.H. Detecting vegetation structure using a kernel-based BRDF model. Remote Sens. Environ. 2003, 86, 198–205. [Google Scholar] [CrossRef]
- De Colstoun, E.C.; Walthall, C.L. Improving global scale land cover classifications with multi-directional POLDER data and a decision tree classifier. Remote Sens. Environ. 2006, 100, 474–485. [Google Scholar] [CrossRef]
- Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 2010, 114, 514–519. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Lacaze, R.; Chen, J.M.; Roujean, J.L. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens. Environ. 2002, 79, 84–95. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Zhong, B.; Ma, P.; Nie, A.; Yang, A.; Yao, Y.; Lü, W.; Zhang, H.; Liu, Q. Land cover mapping using time series HJ-1/CCD data. Sci. China Earth Sci. 2014, 57, 1790–1799. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.; Nie, A.; Yao, Y.; Zhang, H.; Wu, S.; Liu, Q. Finer resolution land-cover mapping using multiple classifiers and multisource remotely sensed data in the Heihe river basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4973–4992. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y. Advances in HEIFE Research (1987–1994); China Meteorological Press: Beijing, China, 1994. [Google Scholar]
- Li, X.; Li, X.W.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G.; et al. Watershed allied telemetry experimental research. J. Geophys. Res. Atmos. 2009, 114, 2191–2196. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (Hiwater): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, B.; Yan, N.; Feng, X.; Xing, Q. A method to estimate diurnal surface soil heat flux from MODIS data for a sparse vegetation and bare soil. J. Hydrol. 2014, 511, 139–150. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Wu, B. Investigating the capability of multi-temporal landsat images for crop identification in high farmland fragmentation regions. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012.
- Jia, K.; Wu, B.; Li, Q. Crop classification using HJ satellite multispectral data in the North China Plain. J. Appl. Meteorol. 2013, 7, 073576. [Google Scholar] [CrossRef]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Eerens, H.; Haesen, D. SPIRITS User Manual, v1.4. Available online: http://spirits.jrc.ec.europe.eu/ (accessed on 20 March 2016).
- Brutsaert, H.W. Exchange processes at the earth-atmosphere interface. In Engineering Meteorology; Plate, E., Ed.; Elsevier: New York, NY, USA, 1982; pp. 319–369. [Google Scholar]
- Panofsky, H.A. Determination of stress from wind and temperature measurements. Q. J. R. Meteorol. Soc. 1963, 89, 85–94. [Google Scholar] [CrossRef]
- Dyer, A.J. A review of flux-profile relationships. Bound. Layer Meteorol. 1974, 7, 363–372. [Google Scholar] [CrossRef]
- Webb, E.K. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 1970, 96, 67–90. [Google Scholar] [CrossRef]
- Frangi, J.P.; Richard, D.C. The WELSONS experiment: Overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain. Ann. Geophys. 2000, 18, 365–384. [Google Scholar] [CrossRef]
- Zhou, Y.; Ju, W.; Sun, X.; Wen, X.; Guan, D. Significant decrease of uncertainties in sensible heat flux simulation using temporally variable aerodynamic roughness in two typical forest ecosystems of China. J. Appl. Meteorol. Climatol. 2012, 51, 1099–1110. [Google Scholar] [CrossRef]
- Pielke, R.A.S. Mesoscale Meteorological Modeling, 3rd ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Strugnell, N.C.; Lucht, W. An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Clim. 2001, 14, 1360–1376. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; White, H.P.; Cihlar, J.; Roujean, J.L.; Lacaze, R. Mapping vegetation clumping index from directional satellite measurements. In Proceedings of the 8th International Symposium Physical Measurements & Signatures in Remote Sensing, Aussois, France, 8–12 January 2001; pp. 450–459.
- Holben, B.; Fraser, R.S. Red and near-infrared sensor response to off-nadiir viewing. Int. J. Remote Sens. 1984, 5, 145–160. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Liu, X.P.; Dong, Z.B. Review of aerodynamic roughness length. J. Desert Res. 2003, 23, 337–346. (In Chinese) [Google Scholar]
- Chen, Q.; Jia, L.; Hutjes, R.; Menenti, M. Estimation of aerodynamic roughness length over oasis in the Heihe River Basin by utilizing remote sensing and ground Data. Remote Sens. 2015, 7, 3690–3709. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Wang, J.; Xie, Z.; Lin, Y.; Huang, F. Upscaling analysis of aerodynamic roughness length based on in situ data at different spatial scales and remote sensing in north Tibetan Plateau. Atmos. Res. 2016, 176, 231–239. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Sun, X.M.; Zhang, R.H.; Zhu, Z.L.; Xu, J.P.; Li, Z.L. The improvement and validation of the model for retrieving the effective roughness length on TM pixel scale. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; pp. 3059–3062.
Location | Coordinates | Land Use | Sensor Height (m) | Period | Data Logger |
---|---|---|---|---|---|
Yingke | 38°51′20′′ N, 100°22′20′′ E | Spring maize | 3, 5, 10, 15, 20, 30, 40 | 19 May–26 October 2014 | CR800 |
Guantao | 36°30′54′′ N, 115°7′39′′ E | Winter wheat Summer maize | 4, 5, 8, 10, 15 | 15 November 2014–29 May 2015 15 June–15 September 2015 | CR1000 |
Local Over Pass Time | 10:45 |
---|---|
Altitude | 820 km |
Field of view | 102° |
Swath width | 2295 km |
Band Name | Spectral Range (µm) | Centre Wavelength (µm) | Geolocation Mean Accuracy (m) |
---|---|---|---|
BLUE | 0.440–0.487 | 0.464 | 60.69 |
RED | 0.614–0.696 | 0.655 | 60.46 |
NIR | 0.772–0.902 | 0.837 | 61.30 |
SWIR | 1.570–1.635 | 1.603 | 61.86 |
Location | Yingke | Guantao | ||||
---|---|---|---|---|---|---|
Crop Type | Spring Maize | Winter Wheat | Summer Maize | |||
Number of points | 33 | 40 | 26 | |||
Correlation with z0m | HDVI | NDVI | HDVI | NDVI | HDVI | NDVI |
a | 0.2236 | 0.2255 | 0.2113 | 0.2476 | 0.2695 | 0.2858 |
b | −0.0279 | 0.0087 | 0.0391 | 0.0615 | 0.0688 | 0.1017 |
R2 | 0.772 | 0.636 | 0.790 | 0.764 | 0.793 | 0.670 |
RMSE | 0.034 | 0.042 | 0.024 | 0.025 | 0.035 | 0.045 |
MAE | 0.027 | 0.031 | 0.020 | 0.018 | 0.028 | 0.033 |
Durbin-Watson statistic | 1.338 | 0.927 | 1.821 | 1.778 | 1.611 | 1.250 |
F-statistics | 15.435 | 12.734 | 17.827 | 12.550 | 11.034 | 8.370 |
p-value | 4.39 × 10−12 | 6.48 × 10−11 | 8.22 × 10−16 | 3.97 × 10−13 | 3.31 × 10−8 | 5.74 × 10−7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wu, B.; Yan, N.; Xing, Q.; Zhu, W. A Method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data. Remote Sens. 2017, 9, 6. https://doi.org/10.3390/rs9010006
Yu M, Wu B, Yan N, Xing Q, Zhu W. A Method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data. Remote Sensing. 2017; 9(1):6. https://doi.org/10.3390/rs9010006
Chicago/Turabian StyleYu, Mingzhao, Bingfang Wu, Nana Yan, Qiang Xing, and Weiwei Zhu. 2017. "A Method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data" Remote Sensing 9, no. 1: 6. https://doi.org/10.3390/rs9010006
APA StyleYu, M., Wu, B., Yan, N., Xing, Q., & Zhu, W. (2017). A Method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data. Remote Sensing, 9(1), 6. https://doi.org/10.3390/rs9010006