A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Image Processing
2.2.1. Derivation of Brightness Temperature
2.2.2. Derivation of Normalized Indices
2.2.3. Hybrid-Supervised Classification
2.3. Quantitative Analysis
2.3.1. Quantitative Analysis from Hybrid-Supervised Classification
2.3.2. Quantitative Analysis from Normalized Indices
3. Results and Discussions
3.1. Quantitative Relationship between Urban Heat Islands and Land Cover Changes
3.2. Quantitative Relationship between Temperature and Index Values
4. Conclusions
Acknowledgments
References
- Lombardo, M.A. Ilha de Calor Nas Metrópoles: O Exemplo de São Paulo (in Portuguese), 1st ed.; Hucitec: São Paulo, Brazil, 1985; p. 244. [Google Scholar]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK, 1987; p. 435. [Google Scholar]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstei, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int J. Biometeorol 2010, 54, 75–84. [Google Scholar]
- Tarifa, J.R. Análise comparativa da temperatura e umidade na área urbana e rural de São José dos Campos (in Portuguese). Boletim de Geografia Teorética 1977, 4, 59–80. [Google Scholar]
- Ashworth, J.R. The influence of smoke and hot gases from factory chimneys on rainfall. Q. J. Roy. Meteorol. Soc 1929, 55, 341–350. [Google Scholar]
- Chandler, T.J. The Climate of London, 1st ed.; Hutchinson & Co.: London, UK, 1965. [Google Scholar]
- Voogt, J.A. Urban Heat Island: Hotter Cities; ActionBioscience: North Port, FL, USA, 2004; Available online: http://www.actionbioscience.org/environment/voogt.html (accessed on 10 October 2012).
- Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and ground-based sensors for the urban heat island analysis in the City of Rome. Remote Sens 2010, 2, 1400–1415. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ 2003, 86, 370–384. [Google Scholar]
- Bechtel, B.; Zaksek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens 2012, 4, 3184–3200. [Google Scholar]
- Rao, P.K. Remote sensing of urban “heat islands” from an environmental satellite. Bull. Am. Meteorol. Soc 1972, 53, 647–648. [Google Scholar]
- Baptista, G.M.M. Estudo multitemporal do fenômeno de ilhas de calor no Distrito Federal (in Portuguese). Revista Meio Ambiente 2002, 02, 03–17. [Google Scholar]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens 2012, 4, 2033–2056. [Google Scholar]
- Rinner, C.; Hussain, M. Toronto’s urban heat island—Exploring the relationship between land use and surface temperature. Remote Sens 2011, 3, 1251–1265. [Google Scholar]
- Costa, P.E.O. Legislação Urbanística e Crescimento Urbano em São José dos Campos (in Portuguese), 2007.
- Câmara, G.; Souza, R.C.M.; Freitas, U.M.; Garrido, J.C.P. Spring: Integrating remote sensing and GIS with object-oriented data modelling. Comput. Graph 1996, 15, 13–22. [Google Scholar]
- Rees, W.G. Physical Principles of Remote Sensing, 2nd ed.; Cambrigde University Press: Cambrigde, UK, 2001; p. 343. [Google Scholar]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Ninyerola, M.; Pons, X. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. J. Geophys. Res 2009, 114, 1–16. [Google Scholar]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res 2003, 108, 1–9. [Google Scholar]
- Chen, Y.; Wang, J.; Li, X. A study on urban thermal field in summer based on satellite remote sensing. Remote Sens. Land Resour 2002, 4, 55–59. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ 2004, 90, 434–440. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings of the Third ERTS Symposium NASA SP-351, Washignton, DC, USA, 10–14 December 1973; 1, pp. 309–317.
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ 1996, 58, 257–266. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens 2005, 24, 583–594. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ and EO-1 ALI sensors. Remote Sens. Environ 2009, 113, 893–903. [Google Scholar]
- FLAASH Module, Atmospheric Correction Module: QUAC and FLAASH User’s Guide; Version 4.7; ITT Visual Information Solutions: Boulder, CO, USA, 2009; p. 44.
- Ponzoni, F.J.; Shimabukuro, Y.E. Sensoriamento Remoto no Estudo da Vegetação, 1st ed.; Parênteses: São José dos Campos, Brazil, 2009. [Google Scholar]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ 2006, 104, 133–146. [Google Scholar]
- Bosch, D.D.; Cosh, M.H. SMEX03 Landsat Thematic Mapper NDVI and NDWI: Georgia; National Snow and Ice Data Center: Boulder, CO, USA, 2008; Available online: http://nsidc.org/data/docs/daac/nsidc0330_smex03_srs_ndvi_ndwi_ga.gd.html (accessed on 10 October 2012).
- Jackson, T.J.; Cosh, M.H. SMEX03 Landsat Thematic Mapper NDVI and NDWI: Oklahoma; National Snow and Ice Data Center: Boulder, CO, USA, 2007; Available online: http://nsidc.org/data/docs/daac/nsidc0330_smex03_srs_ndvi_ndwi_ga.gd.html (accessed on 10 October 2012).
- DeAlwis, D.A.; Easton, Z.M.; Dahlke, H.E.; Philpot, W.D.; Steebhuis, T.S. Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrol. Earth Syst. Sci. Discuss 2007, 4, 1663–1696. [Google Scholar]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens 2011, 3, 1535–1552. [Google Scholar]
- Kamusoko, C.; Aniya, M. Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe. Int. J. Remote Sens 2009, 30, 97–115. [Google Scholar]
- R Development Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; Available online: http://www.R-project.org (accessed on 08 September 2012).
- Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Lett 1990, 50, 157–175. [Google Scholar]
- Manno, I. Introduction to the Monte Carlo Method; Akadémia Kiado: Budapest, Hungary, 1999. [Google Scholar]
- IBGE. 2010 Population Census. Available on: http://www.ibge.gov.br/english/estatistica/populacao/censo2010/default.shtm (accessed on 5 September 2012).
- Silva, M.A. Contribuição ao Estudo do Processo de Industrialização no Município de São José dos Campos-SP (in Portuguese), 2002.
- Maia, L.P.; Raventos, J.S.; Oliveira, P.M.P.; Meireles, A.J.A. Alterações climáticas na região de Fortaleza causadas por fatores naturais e antrópicos (in Portuguese). Revista de Geologia 1996, 9, 111–121. [Google Scholar]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification (in Portuguese). Revista Brasileira de Ciência do Solo 2010, 34, 861–870. [Google Scholar]
- Espig, S.A.; Reis, I.A.; Araújo, E.P.; Formaggio, A.R. Relação Entre o Fator de Reflectância e o Teor de Óxido de Ferro em Latossolos Brasileiros (in Portuguese). In Proceedings of Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, GO, Brasil, 16–21 April 2005; pp. 371–379.
- Nicacias, M.M. Evaluating the Effect of Moisture Stress on Tomato Using Non-Destructive Remote Sensing Techniques, 2009.
- Moura, Y.M.; Galvão, L.S.; dos Santos, J.R.; Roberts, D.A.; Breunig, F.M. Use of MISR/Terra data to study intra- and inter-annual EVI variations in the dry season of tropical forest. Remote Sens. Environ 2012, 127, 260–270. [Google Scholar]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens 1990, 28, 940–948. [Google Scholar]
- Reuter, D.; Richardson, C.; Irons, J.; Allen, R.; Anderson, M.; Budinoff, J.; Casto, G.; Coltharp, C.; Finneran, P.; Forsbacka, B.; et al. The Thermal Infrared Sensor on the Landsat Data Continuity Mission. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 754–757.
<17°C | 17–19°C | 19–21°C | 21–23°C | 23–25°C | 25–27°C | 27–29°C | 29–31°C | 31–33°C | >33°C | urb. | veg. | bar. | wat. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<17°C | 1.00 | 0.68 | 0.88 | 1.00 | −0.88 | −0.91 | −0.91 | −0.91 | −0.90 | 0.22 | −0.44 | 0.58 | −0.90 | 0.82 |
17–19°C | 1.00 | 0.95 | 0.61 | −0.94 | −0.92 | −0.92 | −0.92 | −0.93 | −0.57 | −0.96 | 0.99 | −0.93 | 0.98 | |
19–21°C | 1.00 | 0.83 | −1.00 | −1.00 | −1.00 | −1.00 | −1.00 | −0.28 | −0.81 | 0.90 | −1.00 | 0.99 | ||
21–23°C | 1.00 | −0.83 | −0.87 | −0.87 | −0.87 | −0.86 | 0.31 | −0.35 | 0.51 | −0.85 | 0.76 | |||
23–25°C | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.27 | 0.81 | −0.90 | 1.00 | −0.99 | ||||
25–27°C | 1.00 | 1.00 | 1.00 | 1.00 | 0.20 | 0.77 | −0.87 | 1.00 | −0.98 | |||||
27–29°C | 1.00 | 1.00 | 1.00 | 0.19 | 0.76 | −0.86 | 1.00 | −0.98 | ||||||
29–31°C | 1.00 | 1.00 | 0.20 | 0.76 | −0.86 | 1.00 | −0.98 | |||||||
31–33°C | 1.00 | 0.23 | 0.78 | −0.88 | 1.00 | −0.99 | ||||||||
>33°C | 1.00 | 0.78 | −0.66 | 0.24 | −0.38 | |||||||||
urb. | 1.00 | −0.99 | 0.79 | −0.87 | ||||||||||
veg. | 1.00 | −0.88 | 0.94 | |||||||||||
bar. | 1.00 | −0.99 | ||||||||||||
wat. | 1.00 |
Temp. | NDWI | NDVI | NDBI | |
---|---|---|---|---|
Temp. | 1.00 | 0.50 | 0.96 | −0.20 |
NDWI | 0.50 | 1.00 | 0.74 | −0.95 |
NDVI | 0.96 | 0.74 | 1.00 | −0.48 |
NDBI | −0.20 | −0.95 | −0.48 | 1.00 |
Temp. | NDWI | NDVI | NDBI | |
---|---|---|---|---|
Temp. | 1.00 | 0.87 | 0.52 | −0.27 |
NDWI | 0.87 | 1.00 | 0.87 | 0.23 |
NDVI | 0.52 | 0.87 | 1.00 | 0.68 |
NDBI | −0.27 | 0.23 | 0.68 | 1.00 |
Temp. | NDWI | NDVI | NDBI | |
---|---|---|---|---|
Temp. | 1.00 | 0.86 | 0.80 | −0.49 |
NDWI | 0.86 | 1.00 | 0.99 | 0.02 |
NDVI | 0.80 | 0.99 | 1.00 | 0.13 |
NDBI | −0.49 | 0.02 | 0.13 | 1.00 |
Temp. | NDWI | NDVI | NDBI | |
---|---|---|---|---|
Temp. | 1.00 | 0.46 | 0.52 | 0.81 |
NDWI | 0.46 | 1.00 | 1.00 | 0.89 |
NDVI | 0.52 | 1.00 | 1.00 | 0.92 |
NDBI | 0.81 | 0.89 | 0.92 | 1.00 |
Share and Cite
Ogashawara, I.; Bastos, V.D.S.B. A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover. Remote Sens. 2012, 4, 3596-3618. https://doi.org/10.3390/rs4113596
Ogashawara I, Bastos VDSB. A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover. Remote Sensing. 2012; 4(11):3596-3618. https://doi.org/10.3390/rs4113596
Chicago/Turabian StyleOgashawara, Igor, and Vanessa Da Silva Brum Bastos. 2012. "A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover" Remote Sensing 4, no. 11: 3596-3618. https://doi.org/10.3390/rs4113596
APA StyleOgashawara, I., & Bastos, V. D. S. B. (2012). A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover. Remote Sensing, 4(11), 3596-3618. https://doi.org/10.3390/rs4113596