Application of MODIS Imagery for Intra-Annual Water Clarity Assessment of Minnesota Lakes
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Image Preparation
2.3. Field Water Clarity Data
2.4. Trophic State Index
2.5. Regression Preparation and Analysis
3. Results
3.1. Within-Lake Water Clarity Variation
3.2. Lake Averages by Date
3.3. Accuracy Assessment
3.4. Comparison of MODIS and Ground SDT Predictions
4. Discussion
4.1. Water Clarity Patterns
4.2. Regressions and Accuracy
4.3. Bathymetry Data
5. Conclusions
Acknowledgments
References
- IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Cambridge University Press: Cambridge, UK; p. 2007.
- Berkman, H.E.; Rabeni, C.F. Effect of siltation of stream fish communities. Environ. Biol. Fish 1987, 18, 285–294. [Google Scholar]
- Davies-Colley, R.J.; Smith, D.G. Turbidity, suspended sediment, and water clarity: A review. J. Am. Water Resour. Assoc 2001, 37, 1085–1101. [Google Scholar]
- De Robertis, A.; Ryer, C.H.; Veloza, A.; Brodeur, R.D. Differential effects of turbidity on prey consumption of piscivorous and plantivorous fish. Can. J. Fisheries Aquat. Sci 2003, 60, 1517–1526. [Google Scholar]
- Newcombe, C.P. Impact assessment model for clear water fishes exposed to excessively cloudy water. J. Am. Water Resour. Assoc 2003. [Google Scholar] [CrossRef]
- Walter, B.; Norman, R.; Brian, M.; Brian, H. The Biological Effects of Suspended and Bedded Sediment (SABS) in Aquatic Systems: A Review; Internal Report. USEPA: Washington, DC, USA, 2004. Available online: http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/pollutants/sediment/upload/2004_08_17_criteria_sediment_appendix1.pdf (accessed on 4 October 2011).
- Schwartz, J.S.; Dahle, M.; Robinson, R.B. Concentration-duration-frequency curves for stream turbidity: Possibilities for assessing biological impairment. J. Am. Water Resour. Assoc 2008, 44, 879–886. [Google Scholar]
- Lake Access. Turbidity in Lakes. Available online: http://lakeaccess.org/russ/turbidity.htm (accessed on 15 May 2012).
- Howard, D.M.; Minnesota Pollution Control Agency. Aquatic Life Water Quality Standards Draft Technical Support Document for Total Suspended Solids (Turbidity): Triennial Water Quality Standard Amendments to Minnesota Rules Chapters 7050 and 7052; Minnesota Pollution Control Agency: Saint Paul, MN, USA; p. 2011.
- Stadelmann, T.H.; Brezonik, P.L.; Kloiber, S. Seasonal patterns of chlorophyll a and Secchi disk transparency in lakes of East-Central Minnesota: Implications for design of ground- and satellite-based monitoring programs. Lake Reserv. Manag 2001, 17, 299–314. [Google Scholar]
- Minnesota Pollution Control Agency. Guide to Lake Protection and Management. Available online: http://www.pca.state.mn.us/publications/lakes-guide2-ch1-4.pdf (accessed on 15 May 2012).
- Kloiber, S.M.; Brezonik, P.L.; Bauer, M.E. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Res 2002, 36, 4330–4340. [Google Scholar]
- Moore, G.K. Satellite remote sensing of water turbidity. Hydrolog. Sci.Bull 1980, 25, 407–421. [Google Scholar]
- Bukata, R.P.; Jerome, J.H.; Kondratyev, K.Y.; Pozdnaykov, D.V. Estimation of organic and inorganic matter in inland waters: Optical cross sections of Lakes Ontario and Ladoga. J. Great Lakes Res 1991, 17, 461–469. [Google Scholar]
- Bukata, R.P. Satellite Monitoring of Inland and Coastal Water Quality: Retrospection, Introspection and Future Directions; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Nelson, S.A.C.; Soranno, P.A.; Cheruvilil, K.S.; Batzli, S.A.; Skole, D.L. Regional assessment of lake water clarity using satellite remote sensing. J. Limnol 2003, 62, 27–32. [Google Scholar]
- Lathrop, R.G. Landsat thematic mapper monitoring of turbid inland water quality. Photogramm. Eng. Remote Sensing 1992, 58, 465–470. [Google Scholar]
- Cox, R.M.; Forsythe, R.D.; Vaughan, G.E.; Olmsted, L.L. Assessing water quality in the Catawba River reservoirs using Landsat Thematic Mapper satellite data. Lake Reserv. Manag 1998, 14, 405–416. [Google Scholar]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ 2002, 82, 38–47. [Google Scholar]
- Menken, K.; Brezonik, P.L.; Bauer, M.E. Influence of chlorophyll and colored dissolved organic matter (CDOM) on lake reflectance spectra: Implications for measuring lake properties by remote sensing. Lake Reserv. Manag 2005, 22, 179–190. [Google Scholar]
- Lillesand, T.M; Johnson, W.L.; Deuell, R.L.; Lindstrom, O.M.; Meisner, D.E. Use of Landsat data to predict the trophic state of Minnesota lakes. Photogramm. Eng. Remote Sensing 1983, 49, 219–229. [Google Scholar]
- Olmanson, L.G.; Kloiber, S.M.; Bauer, M.E.; Brezonik, P.L. Image Processing Protocol for Regional Assessments of Lake Water Quality; Public Report Series #14; University of Minnesota: Saint Paul, MN, USA, 2001. [Google Scholar]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10000 lakes. Remote Sens. Environ 2008, 112, 4086–4097. [Google Scholar]
- Peckham, S.D.; Lillesand, T.M. Detection of spatial and temporal trends in Wisconsin lake water clarity using Landsat-derived estimates of Secchi depth. Lake Reserv. Manag 2006, 22, 3331–3341. [Google Scholar]
- Fuller, L.M.; Minnerick, R.J. Predicting Water Quality by Relating Secchi-Disk Transparency and Chlorophyll A Measurements to Landsat Satellite Imagery for Michigan Inland Lakes, 2001–2006; Fact Sheet 2007–3022; US Geological Survey: Lansing, MI, USA, 2007. [Google Scholar]
- Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J. Predicting Lake Trophic State by Relating Secchi-Disk Transparency Measurements to Landsat-Satellite Imagery for Michigan Inland Lakes, 2003–05 and 2007–08; Scientific Investigations Report 2011–5007; US Geological Survey: Lansing, MI, USA, 2011; p. 36. [Google Scholar]
- Binding, C.E.; Jerome, J.H.; Bukata, R.P.; Booty, W.G. Trends in water clarity of the Great Lakes from SeaWiFS and CZCS aquatic colour. J. Great Lakes Res 2007, 33, 828–841. [Google Scholar]
- Binding, C.E.; Jerome, J.H.; Booty, W.G.; Bukata, R.P. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sens. Environ 2008, 112, 1702–1711. [Google Scholar]
- Binding, C.E.; Greenberg, T.A.; Jerome, J.H.; Bukata, R.P.; Letourneau, G. An assessment of MERIS algal products during an intense bloom in Lake of the Woods. J. Plankton Res 2010. [Google Scholar] [CrossRef]
- Binding, C.E.; Jerome, J.H.; Bukata, R.P.; Booty, W.G. Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. Int. J. Remote Sens 2010, 31, 5239–5255. [Google Scholar]
- Pozdnyakov, D.; Shuchman, R.; Korosov, A.; Hatt, C. Operational algorithm for the retrieval of water quality in the Great Lakes. Remote Sens. Environ 2005, 97, 352–370. [Google Scholar]
- Chen, Z.Q.; Hu, C.M.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS. Remote Sens. Environ 2007, 109, 207–220. [Google Scholar]
- Becker, R.H.; Sultan, M.I.; Boyer, G.L.; Twiss, M.R.; Konopko, E. Mapping cyanobacterial blooms in the Great Lakes using MODIS. J. Great Lakes Res 2009, 35, 447–453. [Google Scholar]
- Werdell, P.J.; Bailey, S.W.; Franz, B.A.; Harding, L.W., Jr.; Feldman, G.C.; McClain, C.R. Regional and seasonal variability of chlorophyll a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens. Environ 2009, 113, 1319–1330. [Google Scholar]
- Horion, S.; Bergamino, N.; Stenuite, S.; Descy, J.-P.; Plisnier, P.-D.; Loiselle, S.A.; Cornet, Y. Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens. Environ 2010, 114, 781–791. [Google Scholar]
- Moreno-Madrinan, M.J.; Al-Hamdan, M.Z.; Rickman, D.L.; Muller-Karger, F.E. Using surface reflectance MODIS Terra product to estimate turbidity in Tampa Bay, Florida. Remote Sens 2010, 2, 2713–2728. [Google Scholar]
- Doron, M.; Babin, M.; Hembise, O.; Mangin, A.; Garnesson, P. Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data. Remote Sens. Environ 2011, 115, 2986–3001. [Google Scholar]
- Miller, R.L.; Liu, C.-C.; Buonassissi, C.J.; Wu, A.M. A multi-sensor approach to examining the distribution of total suspended matter (TSM) in the Albemarle-Pamlico estuarine system, NC, USA. Remote Sens 2011, 3, 962–974. [Google Scholar]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resour. Res 2011, 47, W09515. [Google Scholar]
- USEPA, National Water Quality Inventory: Report to Congress, 2002 Reporting Cycle: Findings, Rivers and Streams, and Lakes, Ponds and Reservoirs; USEPA: Washington, DC, USA, 2007; Available online: http://water.epa.gov/lawsregs/guidance/cwa/305b/upload/2007_10_15_305b_2002report_report2002pt3.pdf (accessed on 4 October 2011).
- USEPA, National Water Quality Inventory: Report to Congress, 2004 Reporting Cycle: Findings; USEPA: Washington, DC, USA, 2004; Available online: http://www.epa.gov/owow/305b/2004report/report2004pt3.pdf (accessed on 4 October 2011).
- Minnesota Pollution Control Agency. Citizen Lake Monitoring Program Website. Available online: http://www.pca.state.mn.us/water/clmp.html (accessed on 15 May 2012).
- Anderson, P.; Heiskary, S. 2008 Lake Assessment Review Process Transparency Document. Available online: http://www.pca.state.mn.us/index.php/component/option,com_docman/task,doc_view/gid,8609 (accessed on 4 October 2011).
- Vermote, E.F.; Vermeulen, A. MODIS Algorithm Technical Background Document, Atmospheric Correction Algorithm: Spectral Reflectances (MOD09), Version 4.0. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf (accessed on 4 May 2012).
- Franz, B.A.; Kwiatkowska, E.J.; Meister, G.; McClain, C.R. Moderate resolution imaging spectroradiometer on terra: Limitations for ocean color applications. J. Appl. Remote Sens 2008, 2, 023525. [Google Scholar]
- State Climatology Office, DNR Waters. HydroClim Minnesota. Available online: http://climate.umn.edu/doc/journal/hc0609.htm (accessed 4 October 2011).
- Minnesota Pollution Control Agency. Citizen Lake-Monitoring Program: Instruction Manual. Available online: http://www.pca.state.mn.us/publications/wq-s1-13.pdf (accessed on 15 May 2012).
- Lake Access. TSI. Available online: http://lakeaccess.org/lakedata/datainfotsi.html (accessed on 15 May 2012).
- Heiskary, S.A.; Wilson, C.B.; Larsen, D.P. Analysis of regional patterns in lake water quality: Using ecoregions for lake management in Minnesota. Lake Reserv. Manag 1987, 3, 337–344. [Google Scholar]
- Heiskary, S.A.; Wilson, C.B. The regional nature of lake water quality across Minnesota: An analysis for improving resource management. J. Minn. Acad. Sci 1989, 55, 71–77. [Google Scholar]
- USEPA. Level III Ecoregions. Available online: http://www.epa.gov/wed/pages/ecoregions/level_iii.htm (accessed on 4 October 2011).
- Minnesota Pollution Control Agency. Lake and Water Quality. Available online: http://www.pca.state.mn.us/index.php/water/water-types-and-programs/surface-water/lakes/lakes-and-lake-monitoring-in-minnesota.html (accessed on 4 October 2011).
- Scarpace, F.L.; Holmquist, K.W.; Fisher, L.T. Landsat analysis of lake quality. Photogramm. Eng. Remote Sensing 1979, 45, 623–633. [Google Scholar]
3 June | <10% Cloud and Haze |
19 June | <10% Cloud and Haze |
14 July | No Clouds or Haze |
8 August | <10% Cloud and Haze |
7 September | No Clouds or Haze |
5 October | No Clouds or Haze |
Image Date | Lake Count | SDT Point Count | SDT Range (m) |
---|---|---|---|
3 June | 24 | 30 | 1.4–6.4 |
19 June | 35 | 50 | 1.5–8.2 |
14 July | 35 | 41 | 0.9–7.6 |
8 August | 25 | 26 | 0.8–7.9 |
7 September | 18 | 23 | 0.9–5.5 |
5 October | 21 | 22 | 0.8–7.3 |
Lake Trophic State | Oligotrophic Lakes | Mesotrophic Lakes | Eutrophic Lakes | Hypereutrophic Lakes |
---|---|---|---|---|
Water Quality | Extremely High | Moderate | Poor | Extremely Poor |
Photosynthetic Productivity (TSI) | Low (<30–40) | Intermediate (40–50) | High (50–70) | Extremely High (>70) |
Nutrient Levels | Low | Intermediate | High | Extremely High |
Typical Lake | Very clear, deep lakes | Seasonal algae blooms, various lake depths | Green water, shallow lakes | Green water, shallow lakes, summer blooms of blue-green algae (toxic) and surface scum |
Secchi transparency | High | Intermediate | Low | Very low |
Image Date | Regression Equation | R2 | Standard Error |
---|---|---|---|
3 June | ln(SDT) = (0.0086 × Band 3) − (0.0067 × Band 1) + 1.4451 | 0.32 | 0.31 |
19 June | ln(SDT) = (0.0155 × Band 3) − (0.0112 × Band 1) + 1.2812 | 0.66 | 0.26 |
14 July | ln(SDT) = (0.0087 × Band 3) − (0.0098 × Band 1) + 1.4751 | 0.67 | 0.33 |
8 August | ln(SDT) = (0.0111 × Band 3) − (0.0129 × Band 1) + 1.8579 | 0.51 | 0.48 |
7 September | ln(SDT) = (0.0155 × Band 3) − (0.0124 × Band 1) + 1.1711 | 0.71 | 0.27 |
5 October | ln(SDT) = (0.0086 × Band 3) − (0.0097 × Band 1) + 1.6895 | 0.62 | 0.36 |
Image Date | R2 | Standard Error | Range SDT (m) |
---|---|---|---|
19 June | |||
Subset 1 (n = 25) | 0.63 | 0.28 | 1.5–8.2 |
Subset 2 (n = 25) | 0.73 | 0.23 | 1.7–7.6 |
14 July | |||
Subset 1 (n = 21) | 0.69 | 0.35 | 1.1–6.7 |
Subset 2 (n = 20) | 0.67 | 0.32 | 0.9–7.6 |
Image Date | Trophic Class Accuracy | ±1 TSI | ±2 TSI | ±5 TSI | ±10 TSI |
---|---|---|---|---|---|
19 June | |||||
Subset 1 (n = 25) | 68% | 20% | 32% | 60% | 88% |
Subset 2 (n = 25) | 64% | 16% | 24% | 68% | 92% |
19 June Average | 66% | 18% | 28% | 64% | 90% |
14 July | |||||
Subset 1 (n = 21) | 52% | 19% | 29% | 67% | 90% |
Subset 2 (n = 20) | 65% | 15% | 35% | 75% | 100% |
14 July Average | 59% | 17% | 32% | 71% | 95% |
Overall Average | 62% | 18% | 30% | 67% | 93% |
Share and Cite
Knight, J.F.; Voth, M.L. Application of MODIS Imagery for Intra-Annual Water Clarity Assessment of Minnesota Lakes. Remote Sens. 2012, 4, 2181-2198. https://doi.org/10.3390/rs4072181
Knight JF, Voth ML. Application of MODIS Imagery for Intra-Annual Water Clarity Assessment of Minnesota Lakes. Remote Sensing. 2012; 4(7):2181-2198. https://doi.org/10.3390/rs4072181
Chicago/Turabian StyleKnight, Joseph F., and Margaret L. Voth. 2012. "Application of MODIS Imagery for Intra-Annual Water Clarity Assessment of Minnesota Lakes" Remote Sensing 4, no. 7: 2181-2198. https://doi.org/10.3390/rs4072181
APA StyleKnight, J. F., & Voth, M. L. (2012). Application of MODIS Imagery for Intra-Annual Water Clarity Assessment of Minnesota Lakes. Remote Sensing, 4(7), 2181-2198. https://doi.org/10.3390/rs4072181