Inter-Sensor Comparison between THEOS and Landsat 5 TM Data in a Study of Two Crops Related to Biofuel in Thailand
Abstract
:1. Introduction
2. Study Areas
3. Materials and Methods
3.1. Satellite Images
3.2. Satellite Data Processing and Analysis
3.3. Regressions Analysis and NDVI Computation
3.4. Classification and Accuracy Assessment
4. Results and Discussions
4.1. Spectral Characteristics of Biofuel Crops
4.2. Comparison of Landsat 5 TM and THEOS
4.3. Inter-Sensor NDVI Regression Analysis for Multiple Satellite Sensor Applications
4.4. Classification and Accuracy Assessment
5. Conclusions
- The spectral characteristics of cassava and sugarcane were quite similar respectively from both sensors specifically in the visible wavelength. However, higher values were found in the near-infrared between the two crops where THEOS could offer slightly better discrimination between cassava and sugarcane than Landsat 5 TM.
- Significant strong relationships were obtained between THEOS and Landsat 5 TM surface reflectance and NDVI for cassava and sugarcane.
- The regression models to calculate NDVI from one satellite can be used for another. But the model from Landsat 5 TM to THEOS offered poorer R2. These variations may be due to different spatial resolution and also difference in image acquisition day.
- Performance of THEOS and Landsat 5 TM in classifying land cover classes was quite similar. THEOS performed slightly better, but not really much of a difference. This may be due to original resolution of Theos is 15 m as compared to 30 m of Landsat 5 TM.
Acknowledgments
References
- Strengers, B.; Leemans, R.; Eickhout, B.; de Vries, B.; Bouwman, L. The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model. GeoJournal 2004, 61, 381–393. [Google Scholar]
- Smeets, E.M.W.; Faaij, A.P.C.; Lewandowski, I.M.; Turkenburg, W.C. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energ. Combust 2007, 33, 56–106. [Google Scholar]
- Hellmann, F.; Verburg, P.H. Spatially explicit modelling of biofuel crops in Europe. Biomass Bioenerg 2008, 35, 2411–2424. [Google Scholar]
- Plummer, S.E. Perspectives on combining ecological process models and remotely sensed data. Ecol. Model 2000, 129, 169–186. [Google Scholar]
- Soudani, K.; François, C.; Maire, G.; Dantec, V.; Dufrêne, E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ 2003, 102, 161–175. [Google Scholar]
- Hill, J.; Aifadopoulou, D. Comparative analysis of Landsat-5 TM and SPOT HRV-1 data for use in multiple sensor approaches. Remote Sens. Environ 1990, 34, 55–70. [Google Scholar]
- Dinguirard, M.; Slater, N.P. Calibration of space-multispectral imaging sensors: A review. Remote Sens. Environ 1999, 68, 194–205. [Google Scholar]
- Steven, D.M.; Malthus, J.T.; Baret, F.; Xu, H.; Chopping, J.M. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ 2003, 88, 412–422. [Google Scholar]
- Thenkabail, S.P. Inter-sensor relationships between IKONOS and Landsat-7 ETM+ NDVI data in three ecoregions of Africa. Int. J. Remote Sens 2004, 25, 389–408. [Google Scholar]
- Miura, T.; Yoshioka, H.; Fujiwara, K.; Yamamoto, H. Inter-comparison of ASTER and MODIS surface reflectance and vegetation index products for synergistic applications to natural resource monitoring. Sensors 2008, 8, 2480–2499. [Google Scholar]
- GISTDA. Thailand Earth Observation System (THEOS); Geo-Informatics and Space Technology Development Agency (Public Organization), Ministry of Science and Technology: Bangkok, Thailand, 2009. Available online: http://gistda.or.th (accessed on 9 December 2009).
- Bricaud, A.; Bosc, E.; Antoine, D. Algal biomass and sea surface temperature in the Mediterranean Basin: Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sens. Environ 2002, 81, 163–178. [Google Scholar]
- Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot 1998, 17, 189–206. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing, 2nd ed.; Taylor & Francis: London, UK, 2002; pp. 461–463. [Google Scholar]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ 2005, 94, 523–534. [Google Scholar]
- Xaviera, A.C.; Rudorff, B.F.T.; Shimabukuro, Y.E.; Berka, L.M.S.; Moreira, M.A. Multi-temporal analysis of MODIS data to classify sugarcane crop. Int. J. Remote Sens 2006, 27, 755–768. [Google Scholar]
- Bell, R.D.; Silalertruksa, T.; Gheewala, H.S.; Kamens, R. The net cost of biofuels in Thailand: An economic analysis. Energy Policy 2011, 32, 834–843. [Google Scholar]
- Krukanont, P.; Prasertsan, S. Geographical distribution of biomass and potential sites of rubber wood red power plants in Southern Thailand. Biomass Bioenerg 2004, 26, 47–59. [Google Scholar]
- Thampanya, U.; Vermaat, J.E.; Sinsakul, S.; Panapitukkul, N. Coastal erosion and mangrove progradation of Southern Thailand. Estuar. Coast. Shelf Sci 2006, 68, 75–85. [Google Scholar]
- Entwisle, B.; Rindfuss, R.R.; Walsh, S.J.; Page, P.H. Population growth and its spatial distribution as factors in the deforestation of Nang Rong, Thailand. Geoforum 2008, 39, 879–897. [Google Scholar]
- Choowong, M.; Phantuwongraj, S.; Charoentitirat, T.; Chutakositkanon, V.; Yumuang, S.; Charusiri, P. Beach recovery after 2004 Indian Ocean tsunami from Phang-nga, Thailand. Geomorphology 2009, 104, 134–142. [Google Scholar]
- Chander, G.; Markham, B. L.; Helder, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ 2009, 113, 893–903. [Google Scholar]
- Rajapakse, R.M.S.S.; Tripathi, N.K.; Honda, K. Spectral characterization and LAI modeling for the tea (Camellia sinensis (L.) O. Kuntze) canopy. Int. J. Remote Sens 2002, 23, 3569–3577. [Google Scholar]
- Thuillier, G.; Herse, M.; Labs, S.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by SOLSPEC Spectrometer from the ATLAS 123 and EURECA missions. Solar Physics 2003, 214, 1–22. [Google Scholar]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens 1997, 35, 675–686. [Google Scholar]
- European Space Agency (ESA). Spectral Response Function Information of Landsat 5 TM. Available online: http://calvalportal.ceos.org/cvp/web/guest/landsat-5-tm (accessed on 9 December 2009).
- Liu, X.H.; Skidmore, A.K.; Oosten, H.V. Integration of classification methods for improvement of land cover map accuracy. ISPRS J. Photogramm 2002, 56, 257–268. [Google Scholar]
- Currit, N. Development of remotely sensed, historical land cover change database for rural Chihuahua, Mexico. Int. J. Appl. Earth Obs. Geoinf 2005, 7, 232–247. [Google Scholar]
- Bailly, J.S.; Arnaud, M.; Puech, C. Boosting: A classification method for remote sensing. Int. J. Remote Sens 2007, 28, 1687–1710. [Google Scholar]
- Ramita, M.; Inakwu, O.A.O.; Tiho, A. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens 2009, 1, 330–344. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ 1991, 37, 35–46. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 183. [Google Scholar]
- Colwell, R.N. Manual of Remote Sensing, 2nd ed.; American Society of Photogrammetry: Falls Church, VA, USA, 2002; Volume II, p. 2138. [Google Scholar]
Appendix
6S Main
6S New Subroutines:
Sensor Required Information to Run 6S
0 | //user condition |
43.22 132.65 13.86 199.58 02 09 | //SZA, SAZ, VZA, VAZ, month, day |
1 | //Tropical |
1 | //Continental |
10 | //visibility (10 km) |
−0.062 | //−altitude (0.062 km) |
−1000 | //sensor aboard a satellite |
61 | //theos Band 1 |
1 | //non homogeneous surface |
1 1 0.5 | //vegetation target, environment, radius (0.5 km) |
−0.0303987 | //apparent reflectance RAPP = −ρ(TOA) |
* input apparent reflectance : 0.030 | * |
* measured radiance [w/m2/sr/mic] : 14.200 | * |
* atmospherically corrected reflectance : −0.131 | * |
* coefficients xa xb xc : 0.00355 0.18031 0.19496 | * |
* y = xa*(measured radiance) − xb; acr=y/(1.+ xc*y) | * |
Study Area | Biofuel Crop | Satellites | Date of Acquisition (dd/mm/yy) |
---|---|---|---|
Nakhon Ratchasima Province | Cassava | THEOS | 29/11/08 |
Landsat 5 TM | 11/12/08 | ||
Suphanburi Province | Sugarcane | THEOS | 9/02/09 |
Landsat 5 TM | 11/02/09 |
Sensor | * Spatial Resolution (m) | Band Number Abbreviation | * Spectral Range (nm) | *Center Wavelength (nm) |
---|---|---|---|---|
THEOS | 15 | TH1 | 450–520 | 485 |
TH2 | 530–600 | 565 | ||
TH3 | 620–690 | 655 | ||
TH4 | 770–900 | 835 | ||
Landsat 5 TM | 30 | TM1 | 450–520 | 485 |
TM2 | 520–600 | 560 | ||
TM3 | 630–690 | 660 | ||
TM4 | 760–900 | 830 |
Spectral Range (nm) | *Gain: Wm−2·sr−1·μm−1 | ** ESUNiλWm−2·sr−1·μm−1 | |||
---|---|---|---|---|---|
Gain Number | Cassava | Gain Number | Sugarcane | ||
450–520 | G6 | 2.937 | G4 | 1.468 | 1983 |
530–600 | G5 | 2.122 | G4 | 1.501 | 1813 |
620–690 | G6 | 3.420 | G4 | 1.710 | 1552 |
770–900 | G4 | 1.671 | G4 | 1.671 | 962 |
Landsat 5 TM (LPGS) (DNi MIN =1 and DNi MAX =255) | |||
---|---|---|---|
Spectral Range (nm) | *Gain: Wm−2·sr−1·μm−1 | ** ESUNiλ Wm−2·sr−1·μm−1 | |
Li MIN | Li MAX | ||
450–520 | −1.52 | 193 | 1,983 |
520–600 | −2.84 | 365 | 1,796 |
630–690 | −1.17 | 264 | 1,536 |
760–900 | −1.51 | 221 | 1,031 |
Sensor | *Date (dd/mm/yy) | *Time UTC | **Earth-Sun distance (d) | *θsun (deg) | *Øsun (deg) | *θview (deg) | *Øview (deg) |
---|---|---|---|---|---|---|---|
THEOS | 29/11/08 | 3h13 | 0.9727 | 44.30 | 143.50 | 34.92 | 177.57 |
9/02/09 | 3h29 | 0.9734 | 43.22 | 132.65 | 13.86 | 199.57 | |
Landsat 5 TM | 11/12/08 | 3h15 | 0.9693 | 45.79 | 144.29 | 0.07 | 357.06 |
11/02/09 | 3h29 | 0.9680 | 42.41 | 130.57 | 0.08 | 357.06 |
Band | Cassava | Sugarcane | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
TH1 | 0.75 | 0.46 | 0.76 | 0.61 |
TH2 | 0.73 | 0.73 | 0.77 | 1.01 |
TH3 | 0.87 | 0.60 | 0.73 | 1.27 |
TH4 | 0.93 | 6.42 | 0.82 | 1.44 |
NDVI | 0.94 | 0.03 | 0.74 | 0.04 |
THEOS vs. Landsat 5 TM (15 m) | Training Data | Testing Data | ||
R2 | RMSE | R2 | RMSE | |
Cassava | 0.94 | 0.03 | 0.88 | 0.01 |
Sugarcane | 0.74 | 0.04 | 0.73 | 0.04 |
Landsat 5 TM vs. THEOS (30 m) | Training Data | Testing Data | ||
R2 | RMSE | R2 | RMSE | |
Cassava | 0.70 | 0.05 | 0.89 | 0.06 |
Sugarcane | 0.62 | 0.14 | 0.73 | 0.10 |
NDVIDependent | NDVIIndependent | |||
---|---|---|---|---|
Cassava | Sugarcane | |||
THEOS 30 m | Landsat 5 TM 15 m | THEOS 30 m | Landsat 5 TM 15 m | |
THEOS 15 m | - | a = 0.2338 b = 0.7691 | - | a = 0.3417 b = 0.4833 |
Landsat 5 TM 30 m | a = 0.249 b = 0.752 | - | a = 0.109 b = 1.038 |
Reference Data | |||||||
---|---|---|---|---|---|---|---|
Water | Forest | Paddy field | Sugarcane | Cassava | Total | ||
Map Data | Water | 2,566 | 0 | 6 | 21 | 21 | 2,614 |
Forest | 0 | 3,415 | 0 | 7 | 177 | 3,599 | |
Paddy field | 44 | 0 | 8,503 | 29 | 28 | 8,604 | |
Sugarcane | 489 | 9 | 156 | 2,015 | 548 | 1,572 | |
Cassava | 39 | 25 | 4 | 18 | 29,859 | 29,945 | |
Total | 3,138 | 3,449 | 8,669 | 2,090 | 30,733 | 47,979 |
Reference Data | |||||||
---|---|---|---|---|---|---|---|
Water | Forest | Paddy field | Sugarcane | Cassava | Total | ||
Map Data | Water | 925 | 0 | 2 | 2 | 44 | 973 |
Forest | 0 | 1,242 | 0 | 6 | 136 | 1,384 | |
Paddy field | 0 | 0 | 3,148 | 2 | 9 | 3,159 | |
Sugarcane | 180 | 20 | 3 | 697 | 672 | 1,572 | |
Cassava | 23 | 3 | 22 | 29 | 10,247 | 10,324 | |
Total | 3,138 | 3,449 | 8,669 | 2,090 | 30,733 | 47,979 |
Reference Data | ||||||
---|---|---|---|---|---|---|
Water | Forest | Bare land | Sugarcane | Total | ||
Map Data | Water | 1,336 | 0 | 5 | 1 | 1,342 |
Forest | 2 | 560 | 22 | 47 | 631 | |
Bare land | 29 | 0 | 10,253 | 34 | 10,316 | |
Sugarcane | 0 | 0 | 43 | 16,419 | 16,462 | |
Total | 1,367 | 560 | 10,323 | 16,501 | 28,751 |
Reference Data | ||||||
---|---|---|---|---|---|---|
Water | Forest | Bare land | Sugarcane | Total | ||
Map Data | Water | 484 | 0 | 0 | 160 | 644 |
Forest | 8 | 192 | 33 | 171 | 404 | |
Bare land | 9 | 0 | 3,691 | 45 | 3,745 | |
Sugarcane | 2 | 14 | 22 | 5,604 | 5,642 | |
Total | 530 | 206 | 3,746 | 5,980 | 10,435 |
Share and Cite
Phongaksorn, N.; Tripathi, N.K.; Kumar, S.; Soni, P. Inter-Sensor Comparison between THEOS and Landsat 5 TM Data in a Study of Two Crops Related to Biofuel in Thailand. Remote Sens. 2012, 4, 354-376. https://doi.org/10.3390/rs4020354
Phongaksorn N, Tripathi NK, Kumar S, Soni P. Inter-Sensor Comparison between THEOS and Landsat 5 TM Data in a Study of Two Crops Related to Biofuel in Thailand. Remote Sensing. 2012; 4(2):354-376. https://doi.org/10.3390/rs4020354
Chicago/Turabian StylePhongaksorn, Naruemon, Nitin K. Tripathi, Sivanappan Kumar, and Peeyush Soni. 2012. "Inter-Sensor Comparison between THEOS and Landsat 5 TM Data in a Study of Two Crops Related to Biofuel in Thailand" Remote Sensing 4, no. 2: 354-376. https://doi.org/10.3390/rs4020354
APA StylePhongaksorn, N., Tripathi, N. K., Kumar, S., & Soni, P. (2012). Inter-Sensor Comparison between THEOS and Landsat 5 TM Data in a Study of Two Crops Related to Biofuel in Thailand. Remote Sensing, 4(2), 354-376. https://doi.org/10.3390/rs4020354