Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Collection and Processing
2.2.1. NASA GEDI Data
2.2.2. Airborne Laser (ALS) Scanning Data
2.2.3. Sentinel-1 GRD Data
2.2.4. Harmonized Landsat and Sentinel-2 Dataset
2.2.5. Ancillary Imagery
2.2.6. Spatial Transformations
2.3. Canopy Cover Modeling and Assessment
2.4. Wall-to-Wall Canopy Cover Mapping
2.5. External Validation
2.6. Characterization of Forest Canopy over Across the State of Florida
3. Results
3.1. Model Performance Assessment
3.2. Wall-to-Wall Canopy Cover Maps for Validation Sites
3.3. Spatial Characterization of Canopy Cover Across the State of Florida
4. Discussion
4.1. Canopy Cover Model Performance and Prediction Assessment
4.2. Spatial Characterization of Canopy Cover
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Wear, D.N.; Greis, J.G. The Southern Forest Futures Project: Summary Report. General Technical Report-Southern Research Station; SRS-168; USDA Forest Service: Washington, DC, USA, 2012. [Google Scholar]
- Jenkins, C.N.; Van Houtan, K.S.; Pimm, S.L.; Sexton, J.O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. USA 2015, 112, 5081–5086. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Fisher, J.I.; Zeng, H.; Chapman, E.L.; Baker, D.B.; Hurtt, G.C. Hurricane Katrina’s Carbon Footprint on U.S. Gulf Coast Forests. Science 2007, 318, 1107. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Millington, A.C.; Lafon, C.W. Disturbance after Disturbance: Combined Effects of Two Successive Hurricanes on Forest Community Structure. Ann. Am. Assoc. Geogr. 2020, 110, 571–585. [Google Scholar] [CrossRef]
- Gang, C.; Pan, S.; Tian, H.; Wang, Z.; Xu, R.; Bian, Z.; Pan, N.; Yao, Y.; Shi, H. Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. For. Ecol. Manag. 2020, 472, 118243. [Google Scholar] [CrossRef]
- Balaguru, K.; Xu, W.; Chang, C.-C.; Leung, L.R.; Judi, D.R.; Hagos, S.M.; Wehner, M.F.; Kossin, J.P.; Ting, M. Increased U.S. coastal hurricane risk under climate change. Sci. Adv. 2023, 9, eadf0259. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Smith, A.J.; Betts, R.; Canadell, J.G.; Prentice, I.C.; Le Quéré, C. Climate Change Increases the Risk of Wildfires: January 2020. ScienceBrief. Available online: https://ueaeprints.uea.ac.uk/id/eprint/77982/ (accessed on 18 July 2023).
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Lugo, A.E. Effects of Extreme Disturbance Events: From Ecesis to Social–Ecological–Technological Systems. Ecosystems 2020, 23, 1726–1747. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Nadkarni, N.M.; McIntosh, A.C.S.; Cushing, J.B. A framework to categorize forest structure concepts. For. Ecol. Manag. 2008, 256, 872–882. [Google Scholar] [CrossRef]
- Disney, M.; Lewis, P.; Saich, P. 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens. Environ. 2006, 100, 114–132. [Google Scholar] [CrossRef]
- Leitold, V.; Morton, D.C.; Martinuzzi, S.; Paynter, I.; Uriarte, M.; Keller, M.; Ferraz, A.; Cook, B.D.; Corp, L.A.; González, G. Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data. Ecosystems 2022, 25, 892–910. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R.; Poulter, B. Post-disturbance canopy recovery and the resilience of Europe’s forests. Glob. Ecol. Biogeogr. 2021, 31, 25–36. [Google Scholar] [CrossRef]
- Epstein, M.D.; Seielstad, C.A.; Moran, C.J. Impact and recovery of forest cover following wildfire in the Northern Rocky Mountains of the United States. Fire Ecol. 2024, 20, 56. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice: Pattern and Process; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Chen, G.; Singh, K.K.; Lopez, J.; Zhou, Y. Tree canopy cover and carbon density are different proxy indicators for assessing the relationship between forest structure and urban socio-ecological conditions. Ecol. Indic. 2020, 113, 106279. [Google Scholar] [CrossRef]
- Cui, L.; Jiao, Z.; Zhao, K.; Sun, M.; Dong, Y.; Yin, S.; Li, Y.; Chang, Y.; Guo, J.; Xie, R.; et al. Retrieval of Vertical Foliage Profile and Leaf Area Index Using Transmitted Energy Information Derived from ICESat GLAS Data. Remote Sens. 2020, 12, 2457. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Jiao, Z.; Dong, Y.; Sun, M.; Zhang, X.; Yin, S.; Ding, A.; Chang, Y.; Guo, J.; Xie, R. Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sens. 2019, 11, 2239. [Google Scholar] [CrossRef]
- Zhao, K.; Suarez, J.C.; Garcia, M.; Hu, T.; Wang, C.; Londo, A. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 2018, 204, 883–897. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Sun, M.; Cui, L.; Park, J.; García, M.; Zhou, Y.; Silva, C.A.; He, L.; Zhang, H.; Zhao, K. Evaluation of NASA’s GEDI lidar observations for estimating biomass in temperate and tropical forests. Forests 2022, 13, 1686. [Google Scholar] [CrossRef]
- Duncanson, L.; Neuenschwander, A.; Hancock, S.; Thomas, N.; Fatoyinbo, T.; Simard, M.; Silva, C.A.; Armston, J.; Luthcke, S.B.; Hofton, M.; et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 2020, 242, 111779. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- USGS; NASA. Harmonized Landsat and Sentinel-2 (HLS) product. Available online: https://hls.gsfc.nasa.gov/ (accessed on 15 August 2024).
- Di Tommaso, S.; Wang, S.; Lobell, D.B. Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environ. Res. Lett. 2021, 16, 125002. [Google Scholar] [CrossRef]
- Shendryk, Y. Fusing GEDI with earth observation data for large area aboveground biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103108. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-1 User Handbook; European Space Agency: Paris, France, 2012. [Google Scholar]
- Kaplan, G.G.; Avdan, U. SENTINEL-1 and SENTINEL-2 Data Fusion for Wetlands Mapping: Balikdami, Turkey. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 729–734. [Google Scholar] [CrossRef]
- Heckel, K.; Urban, M.; Schratz, P.; Mahecha, M.D.; Schmullius, C. Predicting forest cover in distinct ecosystems: The potential of multi-source Sentinel-1 and -2 data fusion. Remote Sens. 2020, 12, 302. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Goulden, T. State-wide forest canopy height and aboveground biomass map for New York with 10 m resolution, integrating GEDI, Sentinel-1, and Sentinel-2 data. Ecol. Inform. 2024, 79, 102404. [Google Scholar] [CrossRef]
- Lang, N.; Jetz, W.; Schindler, K.; Wegner, J.D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 2023, 7, 1778–1789. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Q.; Zeng, Y.; Liu, Z.; Zhu, X.X. Nationwide urban tree canopy mapping and coverage assessment in Brazil from high-resolution remote sensing images using deep learning. ISPRS J. Photogramm. Remote Sens. 2023, 198, 1–15. [Google Scholar] [CrossRef]
- Stovin, V.R.; Jorgensen, A.; Clayden, A. Street Trees and Stormwater Management. Arboric. J. 2008, 30, 297–310. [Google Scholar] [CrossRef]
- Florida Natural Areas Inventory. Guide to the Natural Communities of Florida. 2010. Available online: http://www.fnai.org (accessed on 18 September 2024).
- Coyle, D.R.; Klepzig, K.D.; Koch, F.H.; Morris, L.A.; Nowak, J.T.; Oak, S.W.; Otrosina, W.J.; Smith, W.D.; Gandhi, K.J.K. A review of southern pine decline in North America. For. Ecol. Manag. 2015, 349, 134–148. [Google Scholar] [CrossRef]
- Nelson, G. The Trees of Florida: A Reference and Field Guide; Pineapple Press Inc.: Sarasota, FL, USA, 2011; pp. 1–428. ISBN 978-1561644759. [Google Scholar]
- Black, R.J. Florida Climate Data; University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS: Gainesville, FL, USA, 1993. [Google Scholar]
- Main, M.B.; Allen, G.M. The Florida environment: An overview. EDIS 2007, 19, 1–4. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m land use land cover datasets: A comparison of dynamic world, world cover, and ESRI land cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Florida Geographic Information Office (FGIo). FL Peninsular Hx Michael Supplemental LiDAR. 2023. Available online: https://www.floridagio.gov/datasets/FGIO::fl-peninsular-hx-michael-supplemental-lidar-2020-1/about (accessed on 8 January 2024).
- Bohling, G. Introduction to Geostatistics and Variogram Analysis; Kansas Geological Survey: Lawrence, KS, USA, 2005. [Google Scholar]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; De Boissieu, F.; Achim, A. lidR: An R package for analysis of airborne laser scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-1 Data Access and Products. Available online: https://sentinel.esa.int/web/sentinel/copernicus/sentinel-1 (accessed on 18 September 2024).
- Google Earth Engine. Sentinel-1 Algorithms. Available online: https://developers.google.com/earth-engine/guides/sentinel1 (accessed on 24 October 2024).
- Haas, J.; Ban, Y. Sentinel-1A SAR and Sentinel-2A MSI data fusion for urban ecosystem service mapping. Remote Sens. Appl. Soc. Environ. 2017, 8, 41–53. [Google Scholar] [CrossRef]
- Agapiou, A. Estimating proportion of vegetation cover at the vicinity of archaeological sites using Sentinel-1 and -2 data, supplemented by crowdsourced OpenStreetMap geodata. Appl. Sci. 2020, 10, 4764. [Google Scholar] [CrossRef]
- Soudani, K.; Delpierre, N.; Berveiller, D.; Hmimina, G.; Vincent, G.; Morfin, A.; Dufrêne, E. Potential of C-band synthetic aperture radar Sentinel-1 time-series for the monitoring of phenological cycles in a deciduous forest. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102505. [Google Scholar] [CrossRef]
- Nasirzadehdizaji, R.; Sanli, F.B.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Appl. Sci. 2019, 9, 655. [Google Scholar] [CrossRef]
- Schlund, M.; Erasmi, S. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens. Environ. 2020, 246, 111814. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Claverie, M.; Masek, J.G.; Ju, J.; Dungan, J.L. Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2017. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Zhang, X.; Shang, K.; Cen, Y.; Shuai, T.; Sun, Y. Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 86–94. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Bausch, W.C.; Halvorson, A.D.; Cipra, J. Quickbird satellite and ground-based multispectral data correlations with agronomic parameters of irrigated maize grown in small plots. Biosyst. Eng. 2008, 101, 306–315. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Drury, S.A. Image Interpretation in Geology; Allen & Unwin: London, UK, 1987. [Google Scholar]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, A.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- NASA JPL. NASADEM Merged DEM Global 1 Arc Second V001. 2020. Available online: https://lpdaac.usgs.gov/products/nasadem_hgtv001/ (accessed on 24 September 2024).
- Li, Y.; Zeng, H.; Xiong, J.; Miao, G. Influence of topography on UAV LiDAR-based LAI estimation in subtropical mountainous secondary broadleaf forests. Forests 2023, 15, 17. [Google Scholar] [CrossRef]
- Slocum, M.G.; Platt, W.J.; Beckage, B.; Panko, B.; Lushine, J.B. Decoupling natural and anthropogenic fire regimes: A case study in Everglades National Park, Florida. Nat. Areas J. 2007, 27, 41–55. [Google Scholar] [CrossRef]
- Fipps, G.; Skaggs, R.W. Influence of slope on subsurface drainage of hillsides. Water Resour. Res. 1989, 25, 1717–1726. [Google Scholar] [CrossRef]
- Hylander, K. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J. Appl. Ecol. 2005, 42, 518–525. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, S.; Chen, P.; Tang, H.; Ren, H.; Huang, H. Horizontal geolocation error evaluation and correction on full-waveform LiDAR footprints via waveform matching. Remote Sens. 2023, 15, 776. [Google Scholar] [CrossRef]
- Jin, S.; Su, Y.; Gao, S.; Hu, T.; Liu, J.; Guo, Q. The transferability of Random Forest in canopy height estimation from multi-source remote sensing data. Remote Sens. 2018, 10, 1183. [Google Scholar] [CrossRef]
- Wang, X.; Kruger, U.; Irwin, G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44, 5691–5702. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gao, X.; Wen, J.; Zhang, C. An improved random forest algorithm for predicting employee turnover. Math. Probl. Eng. 2019, 2019, 4140707. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rosenfeld, J.P.; Ward, A.; Meijer, E.H.; Yukhnenko, D. Bootstrapping the P300 in diagnostic psychophysiology: How many iterations are needed? Psychophysiology 2017, 54, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Florida Department of Environmental Protection (FDEP). Statewide Land Use and Land Cover of Florida. Available online: https://geodata.dep.state.fl.us/datasets/statewide-land-use-land-cover (accessed on 1 March 2024).
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Bao, G.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved object-based estimation of forest aboveground biomass by integrating LiDAR data from GEDI and ICESat-2 with multi-sensor images in a heterogeneous mountainous region. Remote Sens. 2022, 14, 2743. [Google Scholar] [CrossRef]
- Francini, S.; D’amico, G.; Vangi, E.; Borghi, C.; Chirici, G. Integrating GEDI and Landsat: Spaceborne LiDAR and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy. Sensors 2022, 22, 2015. [Google Scholar] [CrossRef]
- Wang, C.; Elmore, A.J.; Numata, I.; Cochrane, M.A.; Lei, S.; Hakkenberg, C.R.; Li, Y.; Zhao, Y.; Tian, Y. A framework for improving wall-to-wall canopy height mapping by integrating GEDI LiDAR. Remote Sens. 2022, 14, 3618. [Google Scholar] [CrossRef]
- Qi, W.; Lee, S.-K.; Hancock, S.; Luthcke, S.; Tang, H.; Armston, J.; Dubayah, R. Improved forest height estimation by fusion of simulated GEDI LiDAR data and TanDEM-X InSAR data. Remote Sens. Environ. 2019, 221, 621–634. [Google Scholar] [CrossRef]
- Wu, X.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle-based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens. 2019, 11, 908. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Carreiras, J.M.; Vasconcelos, M.J.; Lucas, R.M. Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sens. Environ. 2012, 121, 426–442. [Google Scholar] [CrossRef]
- Fagua, J.C.; Jantz, P.; Rodriguez-Buritica, S.; Duncanson, L.; Goetz, S.J. Integrating LiDAR, multispectral and SAR data to estimate and map canopy height in tropical forests. Remote Sens. 2019, 11, 2697. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, M.; Yang, F.; Yang, C.; Yang, P.; Gao, Y.; Shang, Y.; Peng, D. Forest height mapping using feature selection and machine learning by integrating multi-source satellite data in Baoding City, North China. Remote Sens. 2022, 14, 4434. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.; Woo, N.; Torres, J.; Moll-Rocek, J.; Ehammer, A.; Collins, M.; Jepsen, M.R.; Fensholt, R. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data. Environ. Res. Lett. 2015, 10, 034014. [Google Scholar] [CrossRef]
- Camarretta, N.; Harrison, P.A.; Bailey, T.; Potts, B.; Lucieer, A.; Davidson, N.; Hunt, M. Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches. New For. 2020, 51, 573–596. [Google Scholar] [CrossRef]
- Ygorra, B.; Frappart, F.; Wigneron, J.; Moisy, C.; Catry, T.; Baup, F.; Hamunyela, E.; Riazanoff, S. Monitoring loss of tropical forest cover from Sentinel-1 time-series: A CuSum-based approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102532. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef]
- Hadi; Korhonen, L.; Hovi, A.; Rönnholm, P.; Rautiainen, M. The accuracy of large-area forest canopy cover estimation using Landsat in boreal region. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 118–127. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Ter Braak, C.J.; Van Tongeren, O.F. Data Analysis in Community and Landscape Ecology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Legendre, P.; Fortin, M.J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138. [Google Scholar] [CrossRef]
- Silveira, E.M.; Radeloff, V.C.; Martinuzzi, S.; Pastur, G.J.M.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.O.; Ciuffoli, L.; Rosas, Y.M.; et al. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sens. Environ. 2023, 285, 113391. [Google Scholar] [CrossRef]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Kruckeberg, A.R. An essay: The stimulus of unusual geologies for plant speciation. Syst. Bot. 1986, 11, 455–463. [Google Scholar] [CrossRef]
- Ewel, J.J.; Myers, R.L. Ecosystems of Florida; University of Central Florida Press: Orlando, FL, USA, 1990. [Google Scholar]
- Whittaker, R.H. Gradient analysis of vegetation. Biol. Rev. 1967, 42, 207–264. [Google Scholar] [CrossRef] [PubMed]
- Petrişor, A.-I.; Hamma, W.; Nguyen, H.D.; Randazzo, G.; Muzirafuti, A.; Stan, M.-I.; Tran, V.T.; Aştefănoaiei, R.; Bui, Q.-T.; Vintilă, D.-F.; et al. Degradation of coastlines under the pressure of urbanization and tourism: Evidence on the change of land systems from Europe, Asia and Africa. Land 2020, 9, 275. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Nordheim-Shelt, B. Effects of Anthropogenic Activity on the Green Swamp Preserve Ecosystem (Order No. 10259534). Dissertations & Theses A&I. 2017. Available online: https://login.lp.hscl.ufl.edu/login?url=https://www.proquest.com/dissertations-theses/effects-anthropogenic-activity-on-green-swamp/docview/1894204899/se-2 (accessed on 1 October 2024).
- Florida Fish and Wildlife & Conservation Commission. Babcock Ranch Preserve. 2022. Available online: https://myfwc.com/recreation/cooperative/babcock-ranch-preserve/ (accessed on 1 October 2024).
- Trager, M.D.; Drake, J.B.; Jenkins, A.M.; Petrick, C.J. Mapping and Modeling Ecological Conditions of Longleaf Pine Habitats in the Apalachicola National Forest. J. For. 2018, 116, 304–311. [Google Scholar] [CrossRef]
- Zampieri, N.E.; Pau, S.; Okamoto, D.K. The impact of Hurricane Michael on longleaf pine habitats in Florida. Sci. Rep. 2020, 10, 8483. [Google Scholar] [CrossRef] [PubMed]
- Kourtzanidis, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar]
- Yan, J.; Smith, K.R. Simulation of integrated surface water and ground water systems—Model formulation 1. J. Am. Water Resour. Assoc. 1994, 30, 879–890. [Google Scholar] [CrossRef]
- Bonilla-Moheno, M.; Aide, T.M.; Clark, M.L. The influence of socioeconomic, environmental, and demographic factors on municipality-scale land-cover change in Mexico. Reg. Environ. Change 2012, 12, 543–557. [Google Scholar] [CrossRef]
- Fox, J.; Vogler, J.B. Land-use and land-cover change in montane mainland Southeast Asia. Environ. Manag. 2005, 36, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Shrestha, U.B.; Bawa, K. Socio-economic factors and management regimes as drivers of tree cover change in Nepal. PeerJ 2018, 6, e4855. [Google Scholar] [CrossRef]
- Orr, D.W.; Ogden, J.C. The impact of Hurricane Andrew on the ecosystems of South Florida. Conserv. Biol. 1992, 6, 488–490. Available online: https://www.jstor.org/stable/2386357 (accessed on 18 August 2024).
- Pannozzo, P. Florida Local Government Conservation Planning: Variability, Drivers, and Policy Implications. Doctoral Dissertation, University of Central Florida, Orlando, FL, USA, 2013. [Google Scholar]
- U.S. Census Bureau. Population Density Data for U.S. Counties. Available online: https://data.census.gov/ (accessed on 1 October 2024).
- Carse, G.B.; Foss, J.H. Florida: Its Climate, Soil, Productions, and Agricultural Capabilities; BoD–Books on Demand: Norderstedt, Germany, 2023. [Google Scholar]
- Gramling, G.F., III. Wetland regulation and wildlife habitat protection: Proposals for Florida. Harv. Envtl. L. Rev. 1984, 8, 365. [Google Scholar]
- Oren, R.; Zimmermann, R.; Terbough, J. Transpiration in Upper Amazonia floodplain and upland forests in response to drought-breaking rains. Ecology 1996, 77, 968–973. [Google Scholar] [CrossRef]
- National Park Service. Upland Vegetation Zone. Natl. Park Serv. 2015. Available online: https://www.nps.gov/biso/learn/nature/uplandplants.htm (accessed on 10 November 2024).
- Cordell, S.; Questad, E.J.; Asner, G.P.; Kinney, K.M.; Thaxton, J.M.; Uowolo, A.; Brooks, S.; Chynoweth, M.W. Remote sensing for restoration planning: How the big picture can inform stakeholders. Restor. Ecol. 2017, 25, S147–S154. [Google Scholar] [CrossRef]
- Breidenbach, J.; Ivanovs, J.; Kangas, A.; Nord-Larsen, T.; Nilsson, M.; Astrup, R. Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data. Can. J. For. Res. 2021, 51, 1472–1485. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef]
- Askar, N.; Nuthammachot, N.; Phairuang, W.; Wicaksono, P.; Sayektiningsih, T. Estimating aboveground biomass on private forest using Sentinel-2 imagery. J. Sens. 2018, 2018, 6745629. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Goetz, S.; Hansen, M.C.; Ozdogan, M.; Rogan, J.; Ustin, S.L.; Woodcock, C.E. Remote Sensing for Natural Resource Management and Environmental Monitoring, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J. Remote Sens. 2000, 21, 1139–1157. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel-2 data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Almeida, D.R.A.D.; Stark, S.C.; Chazdon, R.; Nelson, B.W.; César, R.G.; Meli, P.; Gorgens, E.B.; Duarte, M.M.; Valbuena, R.; Moreno, V.S.; et al. The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. For. Ecol. Manag. 2019, 438, 34–43. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Swahyu Kusuma, S.; Phinn, S. Evaluating variable selection and machine learning algorithms for estimating forest heights by combining lidar and hyperspectral data. ISPRS Int. J. Geo-Inf. 2020, 9, 507. [Google Scholar] [CrossRef]
- Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of ultrasonic and spectral sensor data for improving the estimation of biomass in grasslands with heterogeneous sward structure. Remote Sens. 2017, 9, 98. [Google Scholar] [CrossRef]
- Suttle, K.B.; Thomsen, M.A.; Power, M.E. Species interactions reverse grassland responses to changing climate. Science 2007, 315, 640–642. [Google Scholar] [CrossRef]
- Yang, L.H.; Rudolf, V.H.W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 2010, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Keane, R.E.; McKenzie, D.; Falk, D.A.; Smithwick, E.A.H.; Miller, C.; Kellogg, L.-K.B. Representing climate, disturbance, and vegetation interactions in landscape models. Ecol. Model. 2015, 309–310, 33–47. [Google Scholar] [CrossRef]
Metric | Acronym | Equation/Wavelength | Reference |
---|---|---|---|
Sentinel-1 GRD | |||
Vertical–vertical; vertical–horizontal polarization | σVV and σVH | 5.405 GHz | [52] |
Radar Vegetation Index | RVI | [53] | |
Co-polarization Ratio | COPOL | [54] | |
Co-polarization Ratio 2 | COPOL 2 | [55] | |
Co-polarization Ratio 3 | COPOL 3 | [56] |
Metric | Acronym | Equation/Wavelength | Reference |
---|---|---|---|
HLS | |||
Blue, green, red, near-infrared, short-wave infrared, short-wave infrared 2 | B, G, R, NIR, SWIR1, SWIR2 | 0.490 µm, 0.560 µm, 0.665 µm, 0.842 µm, 1.610 µm, 2.190 µm | [57] |
Normalized Difference Vegetation Index | NDVI | [59] | |
Enhanced Vegetation Index | EVI | [60] | |
Soil-Adjusted Vegetation Index | SAVI | [61] | |
Modified -Adjusted Vegetation Index | MSAVI2 | [62] | |
Linear Spectral Unmixing | LSU | - | [63] |
Soil | FSOIL | ||
Water | FWATER | ||
Vegetation | FVEG | ||
Simple Ratio Index | SRI | [64] | |
Normalized Difference Water Index | NDWI | [65] | |
Green Chlorophyll Index | GCI | [66] | |
Wide Dynamic Range Vegetation Index | WDRVI | [67] | |
Global Vegetation Moisture Index | GVMI | [68] | |
Chlorophyll Vegetation index | CVI | [69] | |
Clay Minerals Ratio | CMR | [70] | |
Kernel-Normalized Difference Vegetation Index | KNDVI | [71] |
Spatial Transformation | Acronym | Equation | Reference |
---|---|---|---|
GLCM | |||
Angular Second Moment | Metric + “_ASM” | [77] | |
Contrast | Metric + “_CONT” | ||
Correlation | Metric + “_COR” | ||
Variance | Metric + “_VAR” | ||
Inverse Difference Moment | Metric + “_IDM” | ||
Sum Variance | Metric + “_SVAR” | ||
Sum Average | Metric + “_SVG” | ||
Sum Entropy | Metric + “_SENT” | ||
Entropy | Metric + “_ENT” | ||
Difference Variance | Metric + “_DVAR” | Variance of | |
Difference Entropy | Metric + “_DENT” | ||
Informal Measures of Correlation 1 | Metric + “_IMCORR1” | ||
Informal Measures of Correlation 2 | Metric + “_IMCORR2” | ||
Maximum Correlation Coefficient | Metric + “_MAXCOR” | ||
Dissimilarity | Metric + “_DISS” | ||
Inertia | Metric + “_INERTIA” | ||
Shade | Metric + “_SHADE” | ||
Cluster Prominence | Metric + “_PROM” | ||
Moving window | |||
Maximum | Metric + “_MAX” | [80] | |
Minimum | Metric + “_MIN” | ||
Mean | Metric + “_MEAN” | ||
Standard Deviation | Metric + “_STD” |
Site | Estimated Canopy Cover Mean (%) ± Standard Error | Standard Error (%) | Relative Standard Error to the Mean (%) |
---|---|---|---|
BRP | 20.8 ± 36.6 | 18.3 | 87.9 |
ANF | 42.4 ± 41.0 | 20.5 | 48.3 |
GSWP | 43.9 ± 40.9 | 20.5 | 46.7 |
Site | R2 | RMSD | MD | ||
---|---|---|---|---|---|
Abs. % | Rel. % | Abs. % | Rel. % | ||
GSWP | 0.64 | 0.30 | 0.30 | −0.24 | −0.24 |
BRP | 0.61 | 43.05 | 42.12 | −34.21 | −34.71 |
ANF | 0.57 | 0.26 | 0.29 | −0.17 | −0.22 |
All sites | 0.70 | 64.15 | 47.31 | −44.04 | −36.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlickmann, M.B.; Bueno, I.T.; Valle, D.; Hammond, W.M.; Prichard, S.J.; Hudak, A.T.; Klauberg, C.; Karasinski, M.A.; Brock, K.M.; Rocha, K.D.; et al. Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery. Remote Sens. 2025, 17, 320. https://doi.org/10.3390/rs17020320
Schlickmann MB, Bueno IT, Valle D, Hammond WM, Prichard SJ, Hudak AT, Klauberg C, Karasinski MA, Brock KM, Rocha KD, et al. Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery. Remote Sensing. 2025; 17(2):320. https://doi.org/10.3390/rs17020320
Chicago/Turabian StyleSchlickmann, Monique Bohora, Inacio Thomaz Bueno, Denis Valle, William M. Hammond, Susan J. Prichard, Andrew T. Hudak, Carine Klauberg, Mauro Alessandro Karasinski, Kody Melissa Brock, Kleydson Diego Rocha, and et al. 2025. "Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery" Remote Sensing 17, no. 2: 320. https://doi.org/10.3390/rs17020320
APA StyleSchlickmann, M. B., Bueno, I. T., Valle, D., Hammond, W. M., Prichard, S. J., Hudak, A. T., Klauberg, C., Karasinski, M. A., Brock, K. M., Rocha, K. D., Xia, J., Vieira Leite, R., Higuchi, P., da Silva, A. C., Maximo da Silva, G., Cova, G. R., & Silva, C. A. (2025). Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery. Remote Sensing, 17(2), 320. https://doi.org/10.3390/rs17020320