Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review
Abstract
:1. Introduction
2. Review Search Methodology
3. Current Monitoring Technologies
3.1. Mass Flow Measurement Sensors
- A laboratory-based dielectric sensor [80] in forage crops.
- Capacitance sensors with artificial neural network modelling, an Adaptive Neuro-Fuzzy Inference System, and multiple regression techniques in paddy rice [81].
- A parallel plate capacitance-throughput sensor in forage crops [82].
- Kormann [83] measured the mass flow based on the X-ray absorption technique.
- Huenink [62] used a large square baler that uses feed-roll displacement (flow speed) and bale weight to measure the mass flow rate.
- Shinners et al. [59] measured the bale weight while fitting the load cells with large square balers. They found that the dynamic bale weight method had the highest prediction accuracy (R2 = 0.99) as compared to SPFH and self-propelled windrower machines.
- Shinners et al. [84] used a self-propelled forage windrower machine on forage cutting equipment, with a prediction accuracy of R2 = 0.83–0.90.
3.2. Volume Flow Measurement Sensors
- The volume and mass flow rate of miscanthus and switchgrass were measured by a commercial auger [85].
3.3. Impact Sensors Installed on Harvesting Machines
- Kumhála et al. [87] used torque sensors and curved impact plates on a mowing machine for the measurements of forage yields. They found very good coefficients of determination (R2 = 0.95) between the conditioner’s power, impact force, and material flow rate.
- Torque sensors and impact-type yield sensors were used to estimate mass flow and spatial maps of grass species [87].
- Kumhála and Prosek [65] measured the mass flow of grass and alfalfa crops through a curved impact plate mounted on a mowing machine.
- Savoie et al. [58] used a curved-type impact plate to determine the mass flow rate of hay material with 5% error, based on the moisture data through prediction modelling.
3.4. Other Available Sensors for Monitoring Biomass and Moisture Data
3.5. Remote Sensing Technology Applications for Monitoring Biomass Yield and Quality Traits
4. Fodder Quality Aspects Using NIR Spectroscopy
4.1. Assessment of Quality Traits
4.1.1. Moisture Contents
4.1.2. Organic Dry Matter Contents
4.1.3. Protein Contents
4.1.4. Fibre Contents
4.1.5. Fat/Lipid Contents
4.2. Limitations, Potential Problems, and Room for Improvement of NIR Spectroscopy
5. Precision Forages and Grassland Management
5.1. Delineating Sward Heterogeneity
5.2. Decision Support Systems
Current Challenges in the Adoption of DSS and Their Possible Solutions
6. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarthy, J.; Delaby, L.; Hennessy, D.; McCarthy, B.; Ryan, W.; Pierce, K.M.; Brennan, A.; Horan, B. The effect of stocking rate on soil solution nitrate concentrations beneath a free-draining dairy production system in Ireland. J. Dairy Sci. 2015, 98, 4211–4224. [Google Scholar] [CrossRef] [PubMed]
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol. Sustain. Food Syst. 2020, 44, 1089–1110. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Finneran, E.; Crosson, P.; O’kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Stochastic simulation of the cost of home-produced feeds for ruminant livestock systems. J. Agric. Sci. 2012, 150, 123–139. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Beukes, P.C.; McCarthy, S.; Wims, C.M.; Gregorini, P.; Romera, A.J. Regular estimates of herbage mass can improve profitability of pasture-based dairy systems. Anim. Prod. Sci. 2019, 59, 359–367. [Google Scholar] [CrossRef]
- Ineichen, S.; Marquardt, S.; Kreuzer, M.; Reidy, B. Forage quality of species-rich mountain grasslands subjected to zero, PK and NPK mineral fertilization for decades. Grass Forage Sci. 2020, 75, 385–397. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Kim, S.; Meki, M.N.; Johnson, M.V.V. Forage Yield Estimation with a Process-Based Simulation Model. In Forage Groups; IntechOpen: London, UK, 2018. [Google Scholar]
- Shalloo, L.; O’Donovan, M.; Leso, L.; Werner, J.; Ruelle, E.; Geoghegan, A.; Delaby, L.; O’leary, N. Grass-based dairy systems, data and precision technologies. Animal 2018, 12, s262–s271. [Google Scholar] [CrossRef]
- Ali, A.; Hassan, M.U.; Kaul, H.P. Broad Scope of Site-Specific Crop Management and Specific Role of Remote Sensing Technologies Within It—A Review. J. Agron. Crop Sci. 2024, 210, e12732. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage mass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef]
- de Morais, L.F.; Cavalcante, A.C.R.; Aquino, D.D.N.; Candido, M.J.D. Remote sensing applied to grassland ecosystems in regions with climatic vulnerability. Ed. Cient. Digit. 2022, 7, 151–164. [Google Scholar]
- Mannetje, L. Measuring biomass of grassland vegetation in Field and Laboratory Methods for Grassland and Animal Production. L. Tmannetje RM Jones. Cap. 2000, 7, 24–31. [Google Scholar]
- Godínez-Alvarez, H.; Herrick, J.E.; Mattocks, M.; Toledo, D.; Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Rayburn, E.B.; Lozier, J.D.; Sanderson, M.A.; Smith, B.D.; Shockey, W.L.; Seymore, D.A.; Fultz, S.W. Alternative methods of estimating forage height and sward capacitance in pastures can be cross calibrated. Forage Grazinglands 2007, 5, 1–6. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’Brien, B.; Hennessy, D.; Hurley, M.; Murphy, M.D. Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precis. Agric. 2021, 22, 922–946. [Google Scholar] [CrossRef]
- López-Guerrero, I.; Fontenot, J.P.; García-Peniche, T.B. Comparisons between four methods of biomass estimation in tall fescue grasslands. Mex. J. Livest. Sci. 2011, 2, 209–220. [Google Scholar]
- Rayburn, E.B.; Shockey, W.L.; Seymour, D.A.; Smith, B.D. Calibration of pasture forage mass to plate meter compressed height is a second-order response with a zero intercept. Crop Forage Turfgrass Manag. 2017, 3, 3192. [Google Scholar] [CrossRef]
- Cho, W.; Brorsen, B.W.; Biermacher, J.T.; Rogers, J.K. Rising plate meter calibrations for forage mass of wheat and rye. Agric. Environ. Lett. 2019, 4, 180057. [Google Scholar] [CrossRef]
- Long, E.A.; Ketterings, Q.M.; Russell, D.; Vermeylen, F.; DeGloria, S. Assessment of yield monitoring equipment for dry matter and yield of corn silage and alfalfa/grass. Precis. Agric. 2016, 17, 546–563. [Google Scholar] [CrossRef]
- Worek, F.; Thurner, S. Yield measurement of wilted forage and silage maize with forage harvesters. In Precision agriculture’21; Wageningen Academic: Budapest, Hungary, 2021; Chapter 11; pp. 103–110. [Google Scholar]
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2011, 2, 167–183. [Google Scholar] [CrossRef]
- Seefeldt, S.S.; Booth, D.T. Measuring plant cover in sagebrush steppe rangelands: A comparison of methods. Environ. Manag. 2006, 37, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Gao, S.; Chi, H.; Qi, J.; Song, W.; Tong, Y.; Mu, X.; Yan, G. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Quan, X.; He, B.; Yebra, M.; Yin, C.; Liao, Z.; Zhang, X.; Li, X. A radiative transfer model-based method for the estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168. [Google Scholar] [CrossRef]
- Tu, Y.; Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Zhang, X. Fractional vegetation cover estimation in heterogeneous areas by combining a radiative transfer model and a dynamic vegetation model. Int. J. Digit. Earth 2020, 13, 487–503. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Li, J.; Xu, B.; Yang, X.; Jin, Y.; Zhao, L.; Zhao, F.; Chen, S.; Guo, J.; Qin, Z.; Ma, H. Characterizing changes in grassland desertification based on Landsat images of the Ongniud and Naiman Banners, Inner Mongolia. Int. J. Remote Sens. 2015, 36, 5137–5149. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Meyer, H.; Wang, Y.; Miehe, G.; Thies, B.; Reudenbach, C.; Bendix, J. Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote Sens. Environ. 2015, 164, 197–207. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Geng, X.; Wang, X.; Fang, H.; Ye, J.; Han, L.; Gong, Y.; Cai, D. Vegetation coverage of desert ecosystems in the Qinghai-Tibet Plateau is underestimated. Ecol. Indic. 2022, 137, 108780. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.P.; Peña, J.M.; Höglind, M.; Bengochea-Guevara, J.M.; Andújar, D. Comparing UAV-based technologies and RGB-D reconstruction methods for plant height and biomass monitoring on grass ley. Sensors 2019, 19, 535. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Ni, W.; Zhang, Z.; Liu, Q.; Sun, G. Regional sampling of forest canopy covers using UAV visible stereoscopic imagery for assessment of satellite-based products in Northeast China. J. Remote Sens. 2022, 2022, 9806802. [Google Scholar] [CrossRef]
- Klingler, A.; Schaumberger, A.; Vuolo, F.; Kalmár, L.B.; Pötsch, E.M. Comparison of direct and indirect determination of leaf area index in permanent grassland. PFG–Journal of Photogrammetry. Remote Sens. Geoinf. Sci. 2020, 88, 369–378. [Google Scholar]
- Dujakovic, A.; Schaumberger, A.; Klingler, A.; Mayer, K.; Atzberger, C.; Klisch, A.; Vuolo, F. Growth unveiled: Decoding the start of grassland seasons in Austria. Eur. J. Remote Sens. 2024, 57, 2323633. [Google Scholar] [CrossRef]
- Dujakovic, A.; Watzig, C.; Schaumberger, A.; Klingler, A.; Atzberger, C.; Vuolo, F. Enhancing Grassland Cut Detection Using Sentinel-2 Time Series Through Integration of Sentinel-1 Sar and Weather Data. SRRN 2024. [Google Scholar] [CrossRef]
- Hu, T.; Cao, M.; Zhao, X.; Liu, X.; Liu, Z.; Liu, L.; Huang, Z.; Tao, S.; Tang, Z.; Guo, Y.; et al. High-resolution mapping of grassland canopy cover in China through the integration of extensive drone imagery and satellite data. ISPRS J. Photogramm. Remote Sens. 2024, 218, 69–83. [Google Scholar] [CrossRef]
- Schellberg, J.; Hejcman, M. Precision fertilizer management on grassland. In Fertilizers: Properties, Applications and Effects; Nova Science Publisher: New York, NY, USA, 2008; p. 107. [Google Scholar]
- McDonnell, J.; McKenna, T.; Yurkonis, K.A.; Hennessy, D.; de Andrade Moral, R.; Brophy, C. A mixed model for assessing the effect of numerous plant species interactions on grassland biodiversity and ecosystem function relationships. J. Agric. Biol. Environ. Stat. 2023, 28, 1–19. [Google Scholar] [CrossRef]
- Brophy, C.; Dooley, Á.; Kirwan, L.; Finn, J.A.; McDonnell, J.; Bell, T.; Cadotte, M.W.; Connolly, J. Biodiversity and ecosystem function: Making sense of numerous species interactions in multi-species communities. Ecology 2017, 98, 1771–1778. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Cevallos, L.N.M.; García, J.L.R.; Suárez, B.I.A.; González, C.A.L.; González, I.S.; Campoverde, J.A.Y.; Guzmàn, J.A.M.; Toulkeridis, T. A NDVI analysis contrasting different spectrum data methodologies applied in pasture crops previous grazing–A case study from Ecuador. In Proceedings of the 2018 International Conference on eDemocracy & eGovernment (ICEDEG), Ambato, Ecuador, 4–6 April 2018; pp. 126–135. [Google Scholar]
- Ali, A.; Martelli, R.; Lupia, F.; Barbanti, L. Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sens. 2019, 11, 2384. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Geipel, J.; Bakken, A.K.; Jørgensen, M.; Korsaeth, A. Forage yield and quality estimation by means of UAV and hyperspectral imaging. Precis. Agric. 2021, 22, 1437–1463. [Google Scholar] [CrossRef]
- Michez, A.; Philippe, L.; David, K.; Sébastien, C.; Christian, D.; Bindelle, J. Can low-cost unmanned aerial systems describe the forage quality heterogeneity? Insight from a timothy pasture case study in southern Belgium. Remote Sens. 2020, 12, 1650. [Google Scholar] [CrossRef]
- Théau, J.; Lauzier-Hudon, É.; Aube, L.; Devillers, N. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery. PLoS ONE 2021, 16, e0245784. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zeiner, N.; Parsons, D.; Féret, J.B.; Söderström, M.; Morel, J. Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes. Remote Sens. 2023, 15, 2350. [Google Scholar] [CrossRef]
- Eitel, J.U.; Magney, T.S.; Vierling, L.A.; Brown, T.T.; Huggins, D.R. LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crop. Res. 2014, 159, 21–32. [Google Scholar] [CrossRef]
- Post, C.J.; DeGloria, S.D.; Cherney, J.H.; Mikhailova, E.A. Spectral measurements of alfalfa/grass fields related to forage properties and species composition. J. Plant Nutr. 2007, 30, 1779–1789. [Google Scholar] [CrossRef]
- Dusseux, P.; Guyet, T.; Pattier, P.; Barbier, V.; Nicolas, H. Monitoring of grassland productivity using Sentinel-2 remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102843. [Google Scholar] [CrossRef]
- Nishikawa, H.; Oenema, J.; Sijbrandij, F.; Jindo, K.; Noij, G.J.; Hollewand, F.; Meurs, B.; Hoving, I.; van der Vlugt, P.; Bouten, M.; et al. Dry Matter Yield and Nitrogen Content Estimation in Grassland Using Hyperspectral Sensor. Remote Sens. 2023, 15, 419. [Google Scholar] [CrossRef]
- Mukherjee, A.; Misra, S.; Raghuwanshi, N.S. A survey of unmanned aerial sensing solutions in precision agriculture. J. Netw. Comput. Appl. 2019, 148, 102461. [Google Scholar] [CrossRef]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.L.; Blaise, Y.; Castro Muñoz, E.; Lebeau, F.; Bindelle, J. Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef]
- Lussem, U.; Schellberg, J.; Bareth, G. Monitoring forage mass with low-cost UAV data: Case study at the Rengen grassland experiment. PFG–Journal of Photogrammetry. Remote Sens. Geoinf. Sci. 2020, 88, 407–422. [Google Scholar]
- Lee, W.S.; Schueller, J.K.; Burks, T.F. Wagon-based silage yield mapping system. Agric. Eng. Int. CIGR J. 2005, 7, 1–14. [Google Scholar]
- Savoie, P.; Lemire, P.; Thériault, R. Evaluation of five sensors to estimate mass–flow rate and moisture of grass in a forage harvester. Appl. Eng. Agric. 2002, 18, 389–397. [Google Scholar] [CrossRef]
- Shinners, K.J.; Huenink, B.M.; Behringer, C.B. Precision agriculture as applied to North American hay and forage production. In Proceedings of the International Conference on Crop Harvesting and Processing, Louisville, KY, USA, 9–11 February 2003; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2003. 20p. [Google Scholar]
- Ehlert, D.; Hammen, V.; Adamek, R. On-line sensor pendulum-meter for determination of plant mass. Precis. Agric. 2003, 4, 139–148. [Google Scholar] [CrossRef]
- Forristal, P.D.; Keppel, D. The Application of Harvester-Mounted Forage Yield Sensing Devices; Teagasc: Carlow, Ireland, 2001. [Google Scholar]
- Huenink, B.M. Developing Yield Maps of Hay and Forage Productions; University of Wisconsin—Madison: Madison, WI, USA, 2003. [Google Scholar]
- Kumhala, F.; Prosek, V.; Kroulik, M. Capacitive sensor for chopped maize throughput measurement. Comput. Electron. Agric. 2010, 70, 234–238. [Google Scholar] [CrossRef]
- Demmel, M.; Schwenke, T.; Heuwinkel, H.; Locher, F.; Rottmeier, J. Development and field test of a yield measurement system in a mower conditioner. In Proc. AgEng; MKIFK Hungarian Gazette Publishing and Legal Translation Centre Ltd.: Budapest, Hungary, 2002; pp. 159–160. [Google Scholar]
- Kumhála, F.; Prosěk, V. Laboratory measurement of mowing machine material feed rate. Precis. Agric. 2003, 4, 413–419. [Google Scholar] [CrossRef]
- Wild, K.; Ruhland, S.; Haedicke, S. Local yield detection of grass in a mower conditioner. In Proceedings of the 2005 ASAE Annual Meeting, Providence, RI, USA, 24–27 July 2005; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Miller, C.M.; Fadel, J.G.; Heguy, J.M.; Karle, B.M.; Price, P.L.; Meyer, D. Optimizing accuracy of protocols for measuring dry matter and nutrient yield of forage crops. Sci. Total Environ. 2018, 624, 180–188. [Google Scholar] [CrossRef]
- Razar, R.M.; Makaju, S.; Missaoui, A.M. QTL mapping of biomass and forage quality traits measured using near-infrared reflectance spectroscopy (NIRS) in switchgrass. Euphytica 2021, 217, 51. [Google Scholar] [CrossRef]
- Anderson, W.F.; Dien, B.S.; Masterson, S.D.; Mitchell, R.B. Development of near-infrared reflectance spectroscopy (NIRS) calibrations for traits related to ethanol conversion from genetically variable napier grass (Pennisetum purpureum Schum.). BioEnergy Res. 2019, 12, 34–42. [Google Scholar] [CrossRef]
- Cozzolino, D. Advantages and limitations of using near infrared spectroscopy in plant phenomics applications. Comput. Electron. Agric. 2023, 212, 108078. [Google Scholar] [CrossRef]
- Akins, M.S.; Dobberstain, M.; Shaver, R.D. Evaluation of on-farm forage DM determined by near infrared spectroscopy. In Proceedings of the American Dairy Science Association®-American Society of Animal Science-Association Mexicana de Producción Animal-Canadian Society of Animal Science-Western Section ASAS Joint Annual Meeting, Champaign, IL, USA, 15–19 July 2012; pp. 279–290. [Google Scholar]
- Safari, H.; Fricke, T.; Wachendorf, M. Determination of fibre and protein content in heterogeneous pastures using field spectroscopy and ultrasonic sward height measurements. Comput. Electron. Agric. 2016, 123, 256–263. [Google Scholar] [CrossRef]
- Zhou, Z.; Morel, J.; Parsons, D.; Kucheryavskiy, S.V.; Gustavsson, A.-M. Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data. Comput. Electron. Agric. 2019, 162, 246–253. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Cañada, M.C.; Moreno, A.M.G.; Leal-Murillo, J.R.; González-Dugo, M.P.; Oar, B.A.; Gómez-Giráldez, P.J.; Fernández-Rebollo, P. Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by Random Forest and PLS regressions. Comput. Electron. Agric. 2022, 192, 106614. [Google Scholar] [CrossRef]
- Castro, W.; Marcato Junior, J.; Polidoro, C.; Osco, L.P.; Gonçalves, W.; Rodrigues, L.; Santos, M.; Jank, L.; Barrios, S.; Valle, C.; et al. Deep learning applied to phenotyping of biomass in forages with UAV-based RGB imagery. Sensors 2020, 20, 4802. [Google Scholar] [CrossRef]
- Grüner, E.; Wachendorf, M.; Astor, T. The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures. PLoS ONE 2020, 15, e0234703. [Google Scholar] [CrossRef]
- Muro, J.; Linstädter, A.; Magdon, P.; Wöllauer, S.; Männer, F.A.; Schwarz, L.M.; Ghazaryan, G.; Schultz, J.; Malenovský, Z.; Dubovyk, O. Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning. Remote Sens. Environ. 2022, 282, 113262. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, H. Estimation of grassland height using optical and SAR remote sensing data. Adv. Space Res. 2023, 72, 4298–4310. [Google Scholar] [CrossRef]
- Lussem, U.; Bolten, A.; Kleppert, I.; Jasper, J.; Gnyp, M.L.; Schellberg, J.; Bareth, G. Herbage Mass, N Concentration, and N Uptake of Temperate Grasslands Can Adequately Be Estimated from UAV-Based Image Data Using Machine Learning. Remote Sens. 2022, 14, 3066. [Google Scholar] [CrossRef]
- Kiviharju, K.; Salonen, K.; Moilanen, U.; Meskanen, E.; Leisola, M.; Eerikäinen, T. On-line biomass measurements in bioreactor cultivations: Comparison study of two on-line probes. J. Ind. Microbiol. Biotechnol. 2007, 34, 561–566. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Tabatabaei-kolor, R. Measuring of Paddy mass flow using capacitive sensor and modeling with using multiple regression, ANN, and ANFIS models. Iran. J. Biosyst. Eng. 2017, 48, 221–227. [Google Scholar]
- Kumhala, F.; Prosek, V.; Kroulik, M.; Kviz, Z. Parallel plate mass flow sensor for forage crops and sugar beet. In Proceedings of the 2008, Providence, RI, USA, 29 June–2 July 2008; 1p. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008. [Google Scholar]
- Kormann, G. Mass flow measurement based on X-ray absorption. Agric. Eng. Conf. 2004, 2004, 34. [Google Scholar] [CrossRef]
- Shinners, K.J.; Barnett, N.G.; Schlesser, W.M. Measuring Mass-Flow-Rate on Forage Cutting Equipment. 2000, 1–20. Available online: https://www.researchgate.net/publication/288661644_Measuring_mass-flow-rate_on_forage_cutting_equipment (accessed on 29 December 2024).
- Miao, Z.; Grift, T.E.; Hansen, A.C.; Ting, K.C. Flow performance of ground biomass in a commercial auger. Powder Technol. 2014, 267, 354–361. [Google Scholar] [CrossRef]
- Bailey, J.S.; Higgins, A.; Jordan, C. Empirical models for predicting the dry matter yield of grass silage swards using plant tissue analyses. Precis. Agric. 2000, 2, 131–145. [Google Scholar] [CrossRef]
- Kumhála, F.; Kroulík, M.; Prošek, V. Development and evaluation of forage yield measure sensors in a mowing-conditioning machine. Comput. Electron. Agric. 2007, 58, 154–163. [Google Scholar] [CrossRef]
- Kormann, G.; Auernhammer, H. Continuous moisture measurements in self-propelled forage harvesters. Landtechnik 2002, 57, 264–265. [Google Scholar]
- Digman, M.F.; Shinners, K.J. Real-time moisture measurement on a forage harvester using near-infrared reflectance spectroscopy. Trans. ASABE 2008, 51, 1801–1810. [Google Scholar] [CrossRef]
- Schroeder, J.W. Silage Fermentation and Preservation; NDSU Extension Service: Fargo, ND, USA, 2004; 8p. [Google Scholar]
- Digman, M.F.; Shinners, K.J. Technology background and best practices: Yield mapping in hay and forage. In Proceedings of the University of California Cooperative Extension Proceeding, California Alfalfa and Grain Symposium, Sacramento, CA, USA, 10–12 December 2012. [Google Scholar]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffé, M. Above-ground biomass estimation in oats using UAV remote sensing and machine learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef]
- Badreldin, N.; Prieto, B.; Fisher, R. Mapping grasslands in mixed grassland ecoregion of Saskatchewan using big remote sensing data and machine learning. Remote Sens. 2021, 13, 4972. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Tang, J.; García-Haro, F.J.; Suomalainen, J.; Kooistra, L. Combining hyperspectral UAV and multispectral Formosat-2 imagery for precision agriculture applications. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24-27 June 2014; pp. 1–4. [Google Scholar]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Askari, M.S.; McCarthy, T.; Magee, A.; Murphy, D.J. Evaluation of grass quality under different soil management scenarios using remote sensing techniques. Remote Sens. 2019, 11, 1835. [Google Scholar] [CrossRef]
- Reuß, F.; Navacchi, C.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Schaumberger, A.; Klingler, A.; Mayer, K.; Wagner, W. Evaluation of limiting factors for SAR backscatter based cut detection of alpine grasslands. Sci. Remote Sens. 2024, 9, 100117. [Google Scholar] [CrossRef]
- Watzig, C.; Schaumberger, A.; Klingler, A.; Dujakovic, A.; Atzberger, C.; Vuolo, F. Grassland cut detection based on Sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding. Remote Sens. Environ. 2023, 292, 113577. [Google Scholar] [CrossRef]
- Spoto, F.; Martimort, P.; Drusch, M. Sentinel-2: ESA’s optical high-resolution mission for GMES Operational Services. In Proceedings of the First Sentinel-2 Preparatory Symposium, Frascati, Italy, 23–27 April 2012; Volume 707. 2p. [Google Scholar]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Gamon, J.A.; Townsend, P.A.; Zygielbaum, A.I.; Helzer, C.J.; Hmimina, G.Y.; Yu, R.; Moore, R.M.; Schweiger, A.K.; Cavender-Bares, J. Detecting prairie biodiversity with airborne remote sensing. Remote Sens. Environ. 2019, 221, 38–49. [Google Scholar] [CrossRef]
- Obanawa, H.; Yoshitoshi, R.; Watanabe, N.; Sakanoue, S. Portable LiDAR-based method for improvement of grass height measurement accuracy: Comparison with SfM methods. Sensors 2020, 20, 4809. [Google Scholar] [CrossRef]
- Rivera, G.; Porras, R.; Florencia, R.; Sánchez-Solís, J.P. LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. Comput. Electron. Agric. 2023, 207, 107737. [Google Scholar] [CrossRef]
- Bhargava, A.; Sachdeva, A.; Sharma, K.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M. Hyperspectral Imaging and Its Applications: A Review. Heliyon 2024, 10, e33208. [Google Scholar] [CrossRef] [PubMed]
- Tejasree, G.; Agilandeeswari, L. An extensive review of hyperspectral image classification and prediction: Techniques and challenges. Multimed. Tools Appl. 2024, 83, 80941–81038. [Google Scholar] [CrossRef]
- Goel, P.K.; Prasher, S.O.; Landry, J.A.; Patel, R.M.; Viau, A.A.; Miller, J.R. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Trans. ASAE 2003, 46, 1235. [Google Scholar]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghof, D.; Wengert, M.; Wachendorf, M. Predicting forage quality of Grasslands using UAV-borne imaging spectroscopy. Remote Sens. 2020, 12, 126. [Google Scholar] [CrossRef]
- Wengert, M.; Wijesingha, J.; Schulze-Brüninghoff, D.; Wachendorf, M.; Astor, T. Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data. Remote Sens. 2022, 14, 2068. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef]
- Sainuddin, F.V.; Chirakkal, S.; Asok, S.V.; Das, A.K.; Putrevu, D. Evaluation of multifrequency SAR data for estimating tropical above-ground biomass by employing radiative transfer modeling. Environ. Monit. Assess. 2023, 195, 1102. [Google Scholar] [CrossRef]
- Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef]
- Szigarski, C.; Jagdhuber, T.; Baur, M.; Thiel, C.; Parrens, M.; Wigneron, J.P.; Piles, M.; Entekhabi, D. Analysis of the radar vegetation index and potential improvements. Remote Sens. 2018, 10, 1776. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Andersen, H.E.; Næsset, E. Using airborne laser scanning data to support forest sample surveys. In Forestry Applications of Airborne Laser Scanning: Concepts Case Study; Springer: Berlin/Heidelberg, Germany, 2014; pp. 269–292. [Google Scholar]
- Xu, K.; Su, Y.; Liu, J.; Hu, T.; Jin, S.; Ma, Q.; Zhai, Q.; Wang, R.; Zhang, J.; Li, Y.; et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecol. Indic. 2020, 108, 105747. [Google Scholar] [CrossRef]
- Dech, S.; Holzwarth, S.; Asam, S.; Andresen, T.; Bachmann, M.; Boettcher, M.; Dietz, A.; Eisfelder, C.; Frey, C.; Gesell, G.; et al. Potential and challenges of harmonizing 40 years of AVHRR data: The TIMELINE experience. Remote Sens. 2021, 13, 3618. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Assmann, J.J.; Kerby, J.T.; Cunliffe, A.M.; Myers-Smith, I.H. Vegetation monitoring using multispectral sensors—Best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 2018, 7, 54–75. [Google Scholar] [CrossRef]
- Kawamura, K.; Akiyama, T.; Yokota, H.O.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S. Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China. Grassl. Sci. 2005, 51, 33–40. [Google Scholar] [CrossRef]
- Shahab, H.; Iqbal, M.; Sohaib, A.; Khan, F.U.; Waqas, M. IoT-based agriculture management techniques for sustainable farming: A comprehensive review. Comput. Electron. Agric. 2024, 220, 108851. [Google Scholar] [CrossRef]
- Curnick, D.J.; Davies, A.J.; Duncan, C.; Freeman, R.; Jacoby, D.M.; Shelley, H.T.; Shelley, H.T.; Rossi, C.; Wearn, O.R.; Williamson, M.J.; et al. A new technological frontier in ecology and conservation? Remote Sens. Ecol. Conserv. 2022, 8, 139–150. [Google Scholar] [CrossRef]
- Chopping, M.; Laliberte, A.; Rango, A. Multi-angle data from CHRIS/Proba for determination of canopy structure in desert rangelands. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 7, pp. 4742–4745. [Google Scholar]
- Cofta, P.; Karatzas, K.; Orłowski, C. A conceptual model of measurement uncertainty in IoTiot sensor networks. Sensors 2001, 21, 1827. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farms. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Teh, H.Y.; Kempa-Liehr, A.W.; Wang, K.I.K. Sensor data quality: A systematic review. J. Big Data 2020, 7, 11. [Google Scholar] [CrossRef]
- Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O. Visible, very near IR and short wave IR hyperspectral drone imaging system for agriculture and natural water applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 165–170. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.; McCarty, G.W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Fan, X.; Kawamura, K.; Guo, W.; Xuan, T.D.; Lim, J.; Yuba, N.; Kurokawa, Y.; Obitsu, T.; Lv, R.; Tsumiyama, Y.; et al. A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass. Comput. Electron. Agric. 2018, 144, 314–323. [Google Scholar] [CrossRef]
- Liu, H.; Dahlgren, R.A.; Larsen, R.E.; Devine, S.M.; Roche, L.M.; O’Geen, A.T.; Wong, A.J.; Covello, S.; Jin, Y. Estimating rangeland forage production using remote sensing data from a small unmanned aerial system (sUAS) and planetscope satellite. Remote Sens. 2019, 11, 595. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N. Application of hyperspectral remote sensing role in precision farming and sustainable agriculture under climate change: A review. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 503–520. [Google Scholar]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Wang, K.; Lou, A. Unmanned aerial vehicle (UAV) remote sensing in grassland ecosystem monitoring: A systematic review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- Agrawal, J.; Arafat, M.Y. Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones 2024, 8, 664. [Google Scholar] [CrossRef]
- Jouhari, M.; Al-Ali, A.K.; Baccour, E.; Mohamed, A.; Erbad, A.; Guizani, M.; Hamdi, M. Distributed CNN inference on resource-constrained UAVs for surveillance systems: Design and optimization. IEEE Internet Things J. 2021, 9, 1227–1242. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating agricultural soil moisture content through UAV-based hyperspectral images in the arid region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Rubio, A.E.; Viñuela, I.; Hernández, A.; Gutiérrez-Gordillo, S.; Rodríguez-Pleguezuelo, C.R.; Durán-Zuazo, V.H. Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies. Agric. Water Manag. 2018, 208, 176–186. [Google Scholar] [CrossRef]
- Boschma, S.P.; Murphy, S.R.; Harden, S. Growth rate and nutritive value of sown tropical perennial grasses in a variable summer-dominant rainfall environment, Australia. Grass Forage Sci. 2017, 72, 234–247. [Google Scholar] [CrossRef]
- Parrini, S.; Acciaioli, A.; Crovetti, A.; Bozzi, R. Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Ital. J. Anim. Sci. 2018, 17, 87–91. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Planchon, V.; Dardenne, P.; Stilmant, D. Prediction error and repeatability of near infrared reflectance spectroscopy applied to faeces samples in order to predict voluntary intake and digestibility of forages by ruminants. Anim. Feed. Sci. Technol. 2015, 205, 49–59. [Google Scholar] [CrossRef]
- Pujol, S.; Pérez-Vendrell, A.M.; Torrallardona, D. Evaluation of prediction of barley digestible nutrient content with near-infrared reflectance spectroscopy (NIRS). Livest. Sci. 2007, 109, 189–192. [Google Scholar] [CrossRef]
- Stuth, J.; Jama, A.; Tolleson, D. Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Res. 2003, 84, 45–56. [Google Scholar] [CrossRef]
- Landau, S.; Glasser, T.; Dvash, L. Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Rumin. Res. 2006, 61, 1–11. [Google Scholar] [CrossRef]
- Molano, M.L.; Cortés, M.L.; Ávila, P.; Martens, S.D.; Muñoz, L.S. Ecuaciones de calibración en espectroscopía de reflectancia en el infrarrojo cercano (NIRS) para predicción de parámetros nutritivos en forrajes tropicales. Trop. Grassl.-Forrajes Trop. 2016, 4, 139–145. [Google Scholar] [CrossRef]
- Lahart, B.; McParland, S.; Kennedy, E.; Boland, T.M.; Condon, T.; Williams, M.; Galvin, N.; Buckley, F. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis. J. Dairy Sci. 2019, 102, 8907–8918. [Google Scholar] [CrossRef]
- Baath, G.S.; Baath, H.K.; Gowda, P.H.; Thomas, J.P.; Northup, B.K.; Rao, S.C.; Singh, H. Predicting forage quality of warm-season legumes by near infrared spectroscopy coupled with machine learning techniques. Sensors 2020, 20, 867. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.; Shao, Q.; Yang, Z.; Zhang, X.; Xu, X.; Hassan, M. Determination of water content in corn stover silage using near-infrared spectroscopy. Int. J. Agric. Biol. Eng. 2019, 12, 143–148. [Google Scholar] [CrossRef]
- Asekova, S.; Han, S.I.; Choi, H.J.; Park, S.J.; Shin, D.H.; Kwon, C.H.; Shannon, J.G.; Lee, J.D. Determination of forage quality by near-infrared reflectance spectroscopy in soybean. Turk. J. Agric. For. 2016, 40, 45–52. [Google Scholar] [CrossRef]
- Jin, X.; Shi, C.; Yu, C.Y.; Yamada, T.; Sacks, E.J. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus. Front. Plant Sci. 2017, 8, 721. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: Instrumentation, data analysis, and examples. Appl. Spectrosc. Rev. 2014, 49, 564–584. [Google Scholar] [CrossRef]
- Fernandes, A.M.F. Uso da espectroscopia de reflectância do infravermelho próximo (NIRS) para previsão da composição bromatológica de vagens de algaroba e palma forrageira. Master’s Thesis, Universidade Estadual Vale do Acaraú, Sobral, Brazil, 2015. [Google Scholar]
- Castro, P.; Fernández-Lorenzo, B.; Valladares, J. Pasture Analysis Using NIRS. SERIDA: Villaviciosa, Spain, 2005; Volume 1, pp. 73–80. Available online: https://agris.fao.org/search/en/records/6472461e53aa8c896304638b (accessed on 29 December 2024).
- Ullmann, I.; Herrmann, A.; Hasler, M.; Taube, F. Influence of the critical phase of stem elongation on yield and forage quality of perennial ryegrass genotypes in the first reproductive growth. Field Crops Res. 2017, 205, 23–33. [Google Scholar] [CrossRef]
- Simeone, M.; Gontijo Neto, M.M.; Guimaraes, C.D.C.; Medeiros, E.; Barrocas, G.; Pasquini, C. Use of NIR and PLS to predict chemical composition of Brachiaria. In Proceedings of the 17th International Conference On Near Infrared Spectroscopy, Foz do Iguassu, Brazil, 18–23 October 2015. [Google Scholar]
- Xia, Y.; Huang, W.; Fan, S.; Li, J.; Chen, L. Effect of spectral measurement orientation on online prediction of soluble solids content of apple using Vis/NIR diffuse reflectance. Infrared Phys. Technol. 2019, 97, 467–477. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Xiong, Y.; Zhou, J.; Tan, X.; Zhang, B. Determination of soluble solid content in multi-origin ‘Fuji’apples by using FT-NIR spectroscopy and an origin discriminant strategy. Comput. Electron. Agric. 2018, 155, 23–31. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Liu, L.; Liu, Y. Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy. Multimed. Tools Appl. 2019, 78, 4179–4195. [Google Scholar] [CrossRef]
- Weishaupt, I.; Zimmer, M.; Neubauer, P.; Schneider, J. Model based optimization of transflection near infrared spectroscopy as a process analytical tool in a continuous flash pasteurizer. J. Food Sci. 2020, 85, 2020–2031. [Google Scholar] [CrossRef]
- Campos, M.I.; Antolin, G.; Debán, L.; Pardo, R. Assessing the influence of temperature on NIRS prediction models for the determination of sodium content in dry-cured ham slices. Food Chem. 2018, 257, 237–242. [Google Scholar] [CrossRef]
- Hong, F.W.; Chia, K.S. A review on recent near infrared spectroscopic measurement setups and their challenges. Measurement 2021, 171, 108732. [Google Scholar] [CrossRef]
- Dahm, D.J. Explaining some light scattering properties of milk using representative layer theory. J. Near Infrared Spectrosc. 2013, 21, 323–339. [Google Scholar] [CrossRef]
- McNunn, G.; Heaton, E.; Archontoulis, S.; Licht, M.; VanLoocke, A. Using a crop modeling framework for precision cost-benefit analysis of variable seeding and nitrogen application rates. Front. Sustain. Food Syst. 2019, 3, 108. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Aebischer, P.; Sutter, M.; Birkinshaw, A.; Nussbaum, M.; Reidy, B. Herbage biomass predictions from UAV data using a derived digital terrain model and machine learning. Grass Forage Sci. 2024, 79, 1–13. [Google Scholar] [CrossRef]
- Lüscher, A.; Grieder, C.; Huguenin-Elie, O.; Klaus, V.; Reidy, B.; Schneider, M.K.; Schubiger, F.; Suter, D.; Suter, M.; Kölliker, R. Grassland systems in Switzerland with a main focus on sown grasslands. Improv. Sown Grassl. Through Breed. Manag. 2019, 24, 3–16. [Google Scholar]
- Schori, F. Mit Herbometer und Pasturemeter die Wuchshöhe von Weiden messen und die Grasmasse schätzen. Agrar. Schweiz 2020, 11, 46–52. [Google Scholar]
- Borra-Serrano, I.; De Swaef, T.; Muylle, H.; Nuyttens, D.; Vangeyte, J.; Mertens, K.; Saeys, W.; Somers, B.; Roldàn-Ruiz, I.; Lootens, P. Canopy height measurements and non-destructive biomass estimation of Lolium perenne swards using UAV imagery. Grass Forage Sci. 2019, 74, 356–369. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Igathinathane, C.; Akyuz, A.; Borhan, M.; Hendrickson, J.; Archer, D.; Halvorson, J. Tools for predicting forage growth in rangelands and economic analyses—A systematic review. Agriculture 2023, 13, 455. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Schellberg, J.; Verbruggen, E. Frontiers and perspectives on research strategies in grassland technology. Crop Pasture Sci. 2014, 65, 508–523. [Google Scholar] [CrossRef]
- Shaw, R.; Lark, R.M.; Williams, A.P.; Chadwick, D.R.; Jones, D.L. Characterising the within-field scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor networks for precision agriculture. Agric. Ecosyst. Environ. 2016, 230, 294–306. [Google Scholar] [CrossRef]
- Higgins, S.; Schellberg, J.; Bailey, J.S. Improving productivity and increasing the efficiency of soil nutrient management on grassland farms in the UK and Ireland using precision agriculture technology. Eur. J. Agron. 2019, 106, 67–74. [Google Scholar] [CrossRef]
- Gandorfer, M.; Meyer-Aurich, A. Economic potential of site-specific fertiliser application and harvest management. In Precision Agriculture: Technology and Economic Perspectives; Springer: Cham, Switzerland, 2017; pp. 79–92. [Google Scholar]
- Bao-wei, S.; Geng-xing, Z.; Chao, D. Spatio-temporal variability of soil nutrients and the responses of growth during growth stages of winter wheat in the north of China. bioRxiv 2018, 398701. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Klootwijk, C.W.; Holshof, G.; Van den Pol-van Dasselaar, A.; van Helvoort, K.L.; Engel, B.; de Boer, I.J.; van Middelaar, C.E. The effect of intensive grazing systems on the rising plate meter calibration for perennial ryegrass pastures. J. Dairy Sci. 2019, 102, 10439–10450. [Google Scholar] [CrossRef] [PubMed]
- Houseman, G.R. Aggregated seed arrival alters plant diversity in grassland communities. J. Plant Ecol. 2014, 7, 51–58. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, F.; Yang, L.; Zhang, B.; Gao, L. A hyperspectral image spectral unmixing method integrating slic superpixel segmentation. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Su, Y.; Zhang, S.; Xu, X.; Li, J. Spectral unmixing for geospatial image analysis. In Advances in Machine Learning and Image Analysis for GeoAI; Elsevier: Amsterdam, The Netherlands, 2024; pp. 255–279. [Google Scholar]
- Fernández-Guisuraga, J.M.; González-Pérez, I.; Reguero-Vaquero, A.; Marcos, E. Estimating Grassland Biophysical Parameters in the Cantabrian Mountains Using Radiative Transfer Models in Combination with Multiple Endmember Spectral Mixture Analysis. Remote Sens. 2024, 16, 4547. [Google Scholar] [CrossRef]
- Barthram, G.T.; Duff, E.I.; Elston, D.A.; Griffiths, J.H.; Common, T.G.; Marriott, C.A. Frequency distributions of sward height under sheep grazing. Grass Forage Sci. 2005, 60, 4–16. [Google Scholar] [CrossRef]
- Rook, A.J.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.F.; Parente, G.; Mills, J. Matching type of livestock to desired biodiversity outcomes in pastures–a review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- De Vroey, M.; Radoux, J.; Defourny, P. Grassland mowing detection using sentinel-1 time series: Potential and limitations. Remote Sens. 2021, 13, 348. [Google Scholar] [CrossRef]
- Wachendorf, M. Advances in remote sensing for monitoring grassland and forage production. Burleigh Dodds Science Publishing: Cambridge, UK,, 2018; pp. 353–362. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Della Nave, F.N.; Ojeda, J.J.; Irisarri, J.G.N.; Pembleton, K.; Oyarzabal, M.; Oesterheld, M. Calibrating APSIM for forage sorghum using remote sensing and field data under sub-optimal growth conditions. Agric. Syst. 2022, 201, 103459. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, R.; Cheng, H.; Liang, T.; Zhang, K.; Chai, N.; Gao, J.; Feng, Q.; Hou, M.; Liu, J.; et al. Can machine learning algorithms successfully predict grassland aboveground biomass? Remote Sens. 2022, 14, 3843. [Google Scholar] [CrossRef]
- Shen, N.; Chen, L.; Liu, J.; Wang, L.; Tao, T.; Wu, D.; Chen, R. A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring. Remote Sens. 2019, 11, 1001. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crop. Res. 2008, 106, 94–103. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Van den Berg, W.; Van der Schoot, J.R.; Groten, J.A.M.; Rijk, B.; Van de Ven, G.W.J.; Groten, J.A.M.; Rijk, B.; Van de Ven, G.W.J.; Van Middelkoop, J.C.; et al. Disentangling genetic and non-genetic components of yield trends of Dutch forage crops in the Netherlands. Field Crop. Res. 2020, 249, 107755. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Guo, H.; Ding, F.; Yan, H. Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity. Agric. Water Manag. 2023, 275, 108020. [Google Scholar] [CrossRef]
- Bailey, J.S.; Wang, K.; Jordan, C.; Higgins, A. Use of precision agriculture technology to investigate spatial variability in nitrogen yields in cut grassland. Chemosphere 2001, 42, 131–140. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, K.; Bailey, J.S.; Jordan, C.; Higgins, A.H. Temporal changes in the spatial distributions of some soil properties on a temperate grassland site. Soil Use Manag. 2002, 18, 353–362. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, Y.; Mikami, M. Geostatistical analysis of soil moisture variability in grassland. J. Arid. Environ. 2004, 58, 357–372. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Herrmann, A.; Kelm, M.; Kornher, A.; Taube, F. Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather—A simulation study. Eur. J. Agron. 2005, 22, 141–158. [Google Scholar] [CrossRef]
- Bournaris, T.; Manos, B.; Vlachopoulou, M.; Manthou, V. AgroMANAGER, a web application for farm management. Int. J. Bus. Inf. Syst. 2011, 8, 440–455. [Google Scholar] [CrossRef]
- Bligaard, J. Mark online, a full scale GIS-based Danish farm management information system. Int. J. Food Syst. Dyn. 2014, 5, 190–195. [Google Scholar]
- O’Brien, B.; Murphy, D.; Askari, M.S.; Burke, R.; Magee, A.; Umstätter, C.; McCarthy, T. Modelling precision grass measurements for a web-based decision platform to aid grassland management. Precis. Livest. Farming 2019, 9, 858–863. [Google Scholar]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Green, O. A DSS for planning of soil-sensitive field operations. Decis. Support Syst. 2012, 53, 66–75. [Google Scholar] [CrossRef]
- Delaby, L.; Duboc, G.; Cloet, E.; Martinot, Y. Pastur’Plan: A dynamic tool to support grazing management decision making in a rotational grazing system. In Proceedings of the 18th Symposium of the European Grassland Federation, Wageningen, The Netherlands, 14–17 June 2015; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015. Volume 20. [Google Scholar]
- Navarro-Hellín, H.; Martinez-del-Rincon, J.; Domingo-Miguel, R.; Soto-Valles, F.; Torres-Sánchez, R. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric. 2016, 124, 121–131. [Google Scholar] [CrossRef]
- López-Riquelme, J.A.; Pavón-Pulido, N.; Navarro-Hellín, H.; Soto-Valles, F.; Torres-Sánchez, R. A software architecture based on FIWARE cloud for Precision Agriculture. Agric. Water Manag. 2017, 183, 123–135. [Google Scholar] [CrossRef]
- Ruelle, E.; Hennessy, D.; Delaby, L. Development of the Moorepark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems. Eur. J. Agron. 2018, 99, 80–91. [Google Scholar] [CrossRef]
- McDonnell, J.; Brophy, C.; Ruelle, E.; Shalloo, L.; Lambkin, K.; Hennessy, D. Weather forecasts to enhance an Irish grass growth model. Eur. J. Agron. 2019, 105, 168–175. [Google Scholar] [CrossRef]
- Asher, A.; Brosh, A. Decision support system (DSS) for managing a beef herd and its grazing habitat’s sustainability: Biological/agricultural basis of the technology and its validation. Agronomy 2022, 12, 288. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Igathinathane, C.; Hendrickson, J.; Archer, D.; Liebig, M.; Halvorson, J.; Kronberg, S.; Toledo, D.; Sedivec, K.; Peck, D. Forage economics calculator web tool: A decision support system for forage management. Comput. Electron. Agric. 2023, 208, 107775. [Google Scholar] [CrossRef]
- Siehoff, S.; Lennartz, G.; Heilburg, I.C.; Roß-Nickoll, M.; Ratte, H.T.; Preuss, T.G. Process-based modeling of grassland dynamics built on ecological indicator values for land use. Ecol. Model. 2011, 222, 3854–3868. [Google Scholar] [CrossRef]
- Corson, M.S.; Skinner, R.H.; Rotz, C.A. Modification of the SPUR rangeland model to simulate species composition and pasture productivity in humid temperate regions. Agric. Syst. 2006, 87, 169–191. [Google Scholar] [CrossRef]
- Romera, A.J.; Beukes, P.; Clark, C.; Clark, D.; Levy, H.; Tait, A. Use of a pasture growth model to estimate herbage mass at a paddock scale and assist management on dairy farms. Comput. Electron. Agric. 2010, 74, 66–72. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [Google Scholar] [CrossRef]
- Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A. Online stochastic UAV mission planning with time windows and time-sensitive targets. Eur. J. Oper. Res. 2014, 238, 348–362. [Google Scholar] [CrossRef]
- Oliveira-Jr, A.; Resende, C.; Pereira, A.; Madureira, P.; Gonçalves, J.; Moutinho, R.; Soares, F.; Moreira, F. Iot sensing platform as a driver for digital farming in rural Africa. Sensors 2020, 20, 3511. [Google Scholar] [CrossRef]
- Kamali, F.P.; Borges, J.A.; Meuwissen, M.P.; de Boer, I.J.; Lansink, A.G.O. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 2017, 157, 118–128. [Google Scholar] [CrossRef]
Measurement Systems | Conductivity Sensor | Dielectric Sensor | Capacitance Sensor | Microwave Sensor | NIR Sensor | Nuclear resonance Sensors | Nuclear radiation Sensors | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Transmission | Reflection | Resonator | Time area reflection | Transmission | Reflection | ||||||
influencing factors | Performance | ||||||||||
material temperature | M | M | M | M | M | M | M | L | L | VH | VH |
material density | M | L | L | M | M | M | M | L | VH | H | M |
layer thickness | M | M | M | M | VH | M | M | L | VH | H | M |
corn size | M | M | M | M | M | M | M | M | H | M | M |
sensor pressure | M | M | M | VH | VH | VH | VH | H | H | M | VH |
material similarity | L | L | M | H | L | H | H | H | H | H | M |
electrolyte content | L | M | H | H | H | H | H | VH | VH | VH | VH |
material colour | VH | VH | VH | VH | VH | VH | VH | M | M | VH | VH |
extraneous light | VH | VH | VH | VH | VH | VH | VH | L | L | VH | VH |
biomass material | H | M | M | L | L | L | L | M | M | M | M |
radiation | M | M | M | L | L | M | M | H | H | M | H |
material velocity | H | H | H | M | M | VL | VL | H | H | M | H |
Methods/Sensors | Applications | Advantages | Limitations and Solutions | References |
---|---|---|---|---|
Optical remote sensing technology | Uses optical and hyperspectral images to calculate vegetation indices like NDVI for biomass estimation | Large coverage area, repeatable data collection | Lower spatial resolution as compared to drones, weather dependency. Solution: combination of multi-sensors (e.g., microwave and optical sensors) | [44,97,98] |
Combined Sentinel-1 (S1) SAR and daily weather data, using a machine learning-based model (Catboost) | Detection of precision grassland cuts, for making fertilization and irrigation decisions | Enable cut detection over entire calendar year, eliminates missing and false cuts | Persistent cloud cover may affect results Solution: readings should be taken under clear sky conditions | [36] |
Sentinel-1 backscatter time series | To determine the precise cut events such as harvesting frequency or utilization efficiency of grasslands by livestock | Determine the limiting factors that influence the cut detection | Factors like size, shape, and slope of plants may affect the detection of mowing events. Solution: requires dense in situ measurements to understand the behaviour of C-band backscatter of plants | [99] |
Sentinel-2 data based on RTM of vegetation | Determination of biophysical variables, such as LAI calculated by advanced algorithm techniques, for biomass and LAI of grasslands | Observed lower root-mean-square error than direct measurements | Results might be affected under adverse climatic conditions. Solution: clear sky readings, coupling of cloud-free remote sensing with field spectrometer data | [35] |
Sentinel-2 time series | Grassland cut detection for highest fodder utilization and production | Higher resolution over multispectral bands, high accuracy, frequent revisiting time | Can be affected by cloud cover. Solution: aggregation of Sentinel-2 and ground data with process-based algorithms | [100,101] |
RGB (Red, Green, Blue) resolution sensors mountable on drone | Captures high-resolution colour images to estimate vegetation cover | High spatial resolution, flexible data acquisition | Limited battery life. Solution: further improvements in navigation and the miniaturization of these technologies | [102] |
Multispectral cameras | Captures data in several spectral bands for biomass acquisition | High image quality, ease of use | Ambient conditions, requires ideal camera settings Solution: requires multiple measurements [78] | [103,104] |
LiDAR (UAV/airborne biomass mapping) | Aid in assessing vegetation height, canopy structure, biomass, and LAI estimation | Detailed 3D data (resolution: 532–1064 nm), low cost, high accuracy and speed | Climatic factors such as fog, rain, snow, complex image pre-processing, segmentation, extraction, detection, and image quality assessment. Solution: specialized software and training | [105,106] |
Hyperspectral imaging | Captures detailed spectral information (0.4–2.5 μm) for assessing biomass and quality traits | Accurate, time saving, broad spectral bands, produces large datasets, environmentally safe, high signal-to-noise ratio | Difficult for detecting different items within one image [107], ambient conditions. Solution: analyzing hyperspectral data with deep learning approaches [108] | [109,110,111] |
Machine learning/Artificial Intelligence (AI) | Uses algorithms to analyze remote sensing data and predict biomass | Can improve accuracy and predictive capabilities | Requires large datasets and computational resources | [112,113] |
Synthetic Aperture Radar (SAR) sensors | Microwave radar to estimate biomass by measuring surface roughness and vegetation structure | Effective under all-weather conditions, works day/night, penetrates canopy | Recommended for high aboveground biomass species [114] | [115,116] |
Ground-based laser scanning | Laser pulses to measure vegetation structure and density | Rapid, providing dense spatial data of plant species | High cost, sensitive to extreme weather, low area coverage. Solution: Airborne Laser Scanning [117] | [118] |
AVHRR (Advanced Very-High-Resolution Radiometer) and MODIS sensors | Plant health and vegetation assessment | Estimating the spatial variability of vegetation cover and plant health | Limited resolution, complex calibration, difficulties in assessing consistent time series data [119]. Solution: coupling of AVHRR and MODIS data [120] | [121,122] |
Integrated remote sensing data (MODIS NDVI) and weather information through synergistic approach for grassland yield modelling | Detection of start of the grassland growing seasons for phenological observations, and biomass estimation of grasslands | Daily revisiting frequency, cover large area, time saving | This method gives high NDVI values that may fall outside of the growing season. Solution: requires future research for further validation of this technique | [37] |
Small-sat technology | Equipped with sensors that can determine vegetation canopy cover, soil moisture, growth stages, and weed and pest detection | Cost effectiveness, high resolution, frequent revisit times | Limited sensor capacity, short lifespan, less coverage. Solution: digital smart technology powered by the IoT, AI, and machine learning techniques [123] | [124,125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Kaul, H.-P. Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review. Remote Sens. 2025, 17, 279. https://doi.org/10.3390/rs17020279
Ali A, Kaul H-P. Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review. Remote Sensing. 2025; 17(2):279. https://doi.org/10.3390/rs17020279
Chicago/Turabian StyleAli, Abid, and Hans-Peter Kaul. 2025. "Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review" Remote Sensing 17, no. 2: 279. https://doi.org/10.3390/rs17020279
APA StyleAli, A., & Kaul, H.-P. (2025). Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications—A Review. Remote Sensing, 17(2), 279. https://doi.org/10.3390/rs17020279