Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method
Abstract
:1. Introduction
2. Methods and Theory
2.1. Recovery of Precise Orbits and Clocks Products Using PPP-B2b Correction
2.2. SISRE Assessment
3. Data and Experiments
3.1. Accuracy of PPP-B2b Orbits and Clocks
3.2. Experiments and Validation
3.2.1. Static PPP Processing
3.2.2. Simulated Kinematic PPP Processing
3.2.3. Vehicle-Based Dynamic PPP
4. Conclusions
- (1)
- The accuracy of the orbits and clocks recovered from the PPP-B2b is assessed, indicating that BDS products outperform GPS. The improvement is largely due to the BDS inter-satellite link ranging, which enhances orbit performance.
- (2)
- The static hourly PPP results show that the average convergence times required to achieve horizontal accuracies better than 0.5 m and 0.1 m are approximately 4.5 min and 25 min, respectively. However, a proportion of the sessions, ranging from 7.07% to 23.79%, fail to converge to 0.1 m due to the limited availability of GPS and BDS satellites. For sessions that do converge, the average 3D RMS is 0.1 m.
- (3)
- The simulated kinematic PPP results indicate that the average times required to achieve horizontal accuracies of 0.5 m and 0.1 m are approximately 9.9 min and 25.9 min, respectively. The average positioning RMS values in the N/E/U directions using backward smoothing PPP are 0.024 m, 0.046 m, and 0.053 m. Similar to the case of static PPP, convergence to 0.1 m accuracy cannot always be achieved due to variations in the observation quality at different stations. Using the backward smoothing method, the proportions of positioning errors less than 0.1 m in the north, east, and up directions are 94.03%, 73.00%, and 60.79%, respectively.
- (4)
- The vehicle experiments show that forward PPP can achieve a horizontal accuracy better than 0.5 m within 4 min, with steady improvement over longer observation periods. However, large positioning errors of 1.5 m in the east direction and 3.0 m in the vertical direction are observed during the convergence period. Using the backward smoothing method, an RMS of 0.139 m, 0.163 m, and 0.137 m is achieved in the north, east, and up directions, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Geng, J.; Teferle, F.N.; Meng, X.; Dodson, A.H. Kinematic precise point positioning at remote marine platforms. GPS Solut. 2010, 14, 343–350. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Jiao, G. Assessment of multi-frequency global navigation satellite system precise point positioning models using GPS, BeiDou, GLONASS, Galileo and QZSS. Meas. Sci. Technol. 2020, 31, 064008. [Google Scholar] [CrossRef]
- Shi, J.; Xu, C.; Guo, J.; Gao, Y. Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3452–3459. [Google Scholar]
- Tunalı, E.; Özlüdemir, M.T. GNSS PPP with different troposphere models during severe weather conditions. GPS Solut. 2019, 23, 82. [Google Scholar] [CrossRef]
- Zhang, R.; Li, L.; Li, X.; Ma, H.; Xiao, G.; Zhang, J. Research on Quad-Frequency PPP-B2b Time Transfer. IEEE Instrum. Meas. Mag. 2024, 27, 57–62. [Google Scholar] [CrossRef]
- He, Z.; Li, L.; Zhang, R.; Hou, J.; Xiao, G.; Guang, W.; Zhang, J.; He, X. Research on Single-Frequency PPP-B2b Time Transfer. IEEE Instrum. Meas. Mag. 2023, 26, 42–47. [Google Scholar] [CrossRef]
- Hou, P.; Zha, J.; Liu, T.; Zhang, B. Recent advances and perspectives in GNSS PPP-RTK. Meas. Sci. Technol. 2023, 34, 051002. [Google Scholar] [CrossRef]
- Cai, C.; Liu, G.; Yi, Z.; Cui, X.; Kuang, C. Effect analysis of higher-order ionospheric corrections on quad-constellation GNSS PPP. Meas. Sci. Technol. 2019, 30, 024001. [Google Scholar] [CrossRef]
- Byram, S.; Hackman, C. High-precision GNSS orbit, clock and EOP estimation at the United States Naval Observatory. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012. [Google Scholar]
- Elsobeiey, M.; Al-Harbi, S. Performance of real-time Precise Point Positioning using IGS real-time service. GPS Solut. 2016, 20, 565–571. [Google Scholar] [CrossRef]
- Cheng, C.; Zhao, Y.; Li, L.; Cheng, J.; Sun, X. Preliminary analysis of URA characterization for GPS real-time precise orbit and clock products. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018. [Google Scholar]
- Wang, L.; Li, Z.; Ge, M.; Neitzel, F.; Wang, Z.; Yuan, H. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service. Remote Sens. 2018, 10, 337. [Google Scholar] [CrossRef]
- Abdi, N.; Ardalan, A.A.; Karimi, R.; Rezvani, M.-H. Performance Assessment of Multi-GNSS Real-Time PPP over Iran. Adv. Space Res. 2017, 59, 2870–2879. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Y.; Chen, J.; Wang, H. Improving the (re-)convergence of multi-GNSS real-time precise point positioning through regional between-satellite single-differenced ionospheric augmentation. GPS Solut. 2022, 26, 39. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Y.; Chen, J.; Chen, Q.; Xu, K.; Wang, B. Performance assessment of multi-GNSS real-time products from various analysis centers. Remote Sens. 2022, 15, 140. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Q.; Gao, W.; Li, J.; Xu, Y.; Sun, B. Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satell. Navig. 2022, 3, 5. [Google Scholar] [CrossRef]
- Nie, Z.; Xu, X.; Wang, Z.; Du, J. Initial assessment of BDS PPP-B2b service: Precision of orbit and clock corrections, and PPP performance. Remote Sens. 2021, 13, 2050. [Google Scholar] [CrossRef]
- Tao, J.; Liu, J.; Hu, Z.; Zhao, Q.; Chen, G.; Ju, B. Initial assessment of the BDS-3 PPP-B2b RTS compared with the CNES RTS. GPS Solut. 2021, 25, 131. [Google Scholar] [CrossRef]
- Song, W.; Zhao, X.; Lou, Y.; Sun, W.; Zhao, Z. Performance Evaluation of BDS-3 PPP-B2b Service. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 408–415. [Google Scholar]
- Geng, T.; Li, Z.; Xie, X.; Liu, W.; Li, Y.; Zhao, Q. Real-time ocean precise point positioning with BDS-3 service signal PPP-B2b. Measurement 2022, 203, 111911. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Fu, W.; Han, Y.; Li, T.; Li, W.; Chen, R. Real-time single-frequency precise point positioning using BDS-3 PPP-B2b corrections. Measurement 2022, 205, 112178. [Google Scholar] [CrossRef]
- He, Q.; Chen, L.; Liu, L.; Zhao, D.; Gong, X.; Lou, Y.; Guan, Q. Long-term performance evaluation of BeiDou PPP-B2b products and its application in time service. Remote Sens. 2023, 15, 1358. [Google Scholar] [CrossRef]
- Li, M.; Chai, H. Real-time marine PPP-B2b/SINS integrated navigation based on BDS-3. Measurement Science and Technology 2023, 34, 105113. [Google Scholar] [CrossRef]
- Erol, B.; Turan, E.; Erol, S.; Kuçak, R.A. Comparative performance analysis of precise point positioning technique in the UAV− based mapping. Measurement 2024, 233, 114768. [Google Scholar] [CrossRef]
- Kowalczyk, W.Z.; Hadas, T. A comparative analysis of the performance of various GNSS positioning concepts dedicated to precision agriculture. Rep. Geod. Geoinform. 2024, 117, 11–20. [Google Scholar] [CrossRef]
- Gandolfi, S.; Tavasci, L.; Poluzzi, L. Study on GPS–PPP precision for short observation sessions. GPS Solut. 2016, 21, 887–896. [Google Scholar] [CrossRef]
- Kurtz, B.M.; Gómez, D.D.; Bevis, M.G. Characterization of the precision of PPP solutions as a function of latitude and session length. J. Geod. Sci. 2024, 14, 20220176. [Google Scholar] [CrossRef]
- China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b Version 1.0; China Satellite Navigation Office: Beijing, China, 2020. [Google Scholar]
- Guo, F.; Zhang, X.; Wang, J. Timing group delay and differential code bias corrections for BeiDou positioning. J. Geod. 2015, 89, 427–445. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Multi-GNSS signal-in-space range error assessment–Methodology and results. Adv. Space Res. 2018, 61, 3020–3038. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Wang, C.; Lyu, Y.; Xu, X.; Yang, C.; Li, J. Precise orbit determination for BDS satellites. Satell. Navig. 2022, 3, 2. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Chen, G.; Xu, X.; Zhao, Q. BDS-3 precise orbit and clock solution at Wuhan University: Status and improvement. J. Geod. 2023, 97, 15. [Google Scholar] [CrossRef]
- Xie, X.; Geng, T.; Zhao, Q.; Cai, H.; Zhang, F.; Wang, X.; Meng, Y. Precise orbit determination for BDS-3 satellites using satellite-ground and inter-satellite link observations. GPS Solut. 2019, 23, 40. [Google Scholar] [CrossRef]
- Yao, Y.; He, Y.; Yi, W.; Song, W.; Cao, C.; Chen, M. Method for evaluating real-time GNSS satellite clock offset products. GPS Solut. 2017, 21, 1417–1425. [Google Scholar] [CrossRef]
- Zhao, L.; Dousa, J.; Ye, S.; Vaclavovic, P. A flexible strategy for handling the datum and initial bias in real-time GNSS satellite clock estimation. J. Geod. 2020, 94, 3. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, W.; Wang, C.; Yao, X.; Shi, C.; Liu, J. The impact of orbital errors on the estimation of satellite clock errors and PPP. Adv. Space Res. 2014, 54, 1571–1580. [Google Scholar] [CrossRef]
- Simon, D. Kalman filtering. Embed. Syst. Program. 2001, 14, 72–79. [Google Scholar]
- Vaclavovic, P.; Dousa, J. Backward smoothing for precise GNSS applications. Adv. Space Res. 2015, 56, 1627–1634. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions (2010); IERS Tech. Note 36; IERS: Frankfurt am Main, Germany, 2010; Volume 1. [Google Scholar]
- Galileo GNSS Agency. Galileo High Accuracy Service (HAS); Publications Office of the EU, Galileo GNSS Agency: Paris, France, 2020. [Google Scholar]
- Geng, J.; Chen, X.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An open-source software for GPS PPP ambiguity resolution. GPS Solut. 2019, 23, 91. [Google Scholar] [CrossRef]
Items | Strategies |
---|---|
Observation | GPS: L1/L2; BDS: B1I/B3I |
Elevation mask | 7° |
Weight for observations | Elevation-dependent weighting |
Noise for observations | 0.003 m for phase and 0.6 m for code |
Satellite orbit/clock | PPP-B2b and WHR |
Satellite antenna phase center | Using igs20.atx for WHR PPP |
Filter method | Forward Kalman and backward smoothing |
Tides correction | IERS 2010 [40] |
Troposphere | Zenith wet delay is estimated as a random walk |
Ionosphere | Ionosphere-free combination |
Ambiguity | Estimated as constant with float solution |
Receiver coordinate | Constant in static processing and white noise in the kinematic processing |
Receiver clocks | Estimated as white noise |
Product Type | Error Threshold (m) | Time for 50% Percentile (min) | Time for 68% Percentile (min) | Time for 95% Percentile (min) |
---|---|---|---|---|
PPP-B2B | 0.5 | 4.5 | 7.3 | 19.0 |
0.2 | 12.7 | 18.9 | 60.0 | |
0.1 | 26.4 | 55.5 | 60.0 | |
WHR | 0.5 | 0.4 | 1.3 | 4.2 |
0.2 | 3.6 | 5.9 | 14.3 | |
0.1 | 8.6 | 13.0 | 34.5 |
Station | BIK0 | GAMG | JFNG | POL2 | ULAB | URUM | WUH2 |
---|---|---|---|---|---|---|---|
>average | 39.23% | 36.66% | 39.02% | 38.46% | 37.18% | 44.48% | 42.32% |
>50 min | 27.33% | 9.65% | 11.74% | 19.55% | 12.50% | 27.05% | 18.26% |
>60 min | 23.79% | 7.07% | 7.57% | 16.98% | 10.26% | 19.57% | 12.45% |
RMS (m) | STD (m) | |||||
---|---|---|---|---|---|---|
North | East | Up | North | East | Up | |
Pride_WHR | 0.051 | 0.111 | 0.014 | 0.004 | 0.004 | 0.011 |
NavEngine_WHR | 0.061 | 0.086 | 0.039 | 0.005 | 0.008 | 0.010 |
NavEngine_B2b | 0.055 | 0.076 | 0.049 | 0.006 | 0.024 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Zhai, W. Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method. Remote Sens. 2025, 17, 25. https://doi.org/10.3390/rs17010025
Zhao L, Zhai W. Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method. Remote Sensing. 2025; 17(1):25. https://doi.org/10.3390/rs17010025
Chicago/Turabian StyleZhao, Lewen, and Wei Zhai. 2025. "Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method" Remote Sensing 17, no. 1: 25. https://doi.org/10.3390/rs17010025
APA StyleZhao, L., & Zhai, W. (2025). Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method. Remote Sensing, 17(1), 25. https://doi.org/10.3390/rs17010025