Fault Kinematics of the 2022 Delingha Mw 5.6 and Mw 5.7 Earthquakes Revealed by InSAR Observations
Abstract
:1. Introduction
2. InSAR Data and Processing
3. Determine Fault Geometric Parameters
4. Finite-Fault Slip Modeling
5. Discussions
5.1. Complementary Relationship Between Coseismic Fault Slip and Aftershock Distribution
5.2. Stress Triggering Among the Earthquake Sequence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Yuan, D.-Y.; Ge, W.-P.; Chen, Z.-W.; Li, C.-Y.; Wang, Z.-C.; Zhang, H.-P.; Zhang, P.-Z.; Zheng, D.-W.; Zheng, W.-J.; Craddock, W.H.; et al. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies. Tectonics 2013, 32, 1358–1370. [Google Scholar] [CrossRef]
- Xu, Z.G.; Shi, J.Y.; Liang, S.S.; Li, H.W.; Zou, L.Y. Full Moment Tensor Inversion and Preliminary Analysis of the Seismogenic Structure of the M_S 5.8 Earthquake in Delingha, Qinghai on 23 January 2022. Earthq. Eng. J. 2022, 44, 1128–1135. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, J.; Qiao, X. A study on the seismogenic structure of the 2016 Zaduo, Qinghai Ms6.2 earthquake using InSAR technology. Geod. Geodyn. 2017, 8, 342–346. [Google Scholar] [CrossRef]
- Xiong, W.; Chen, W.; Zhao, B.; Wen, Y.; Liu, G.; Nie, Z.; Qiao, X.; Xu, C. Insight into the 2016 Menyuan Mw 5.9 Earthquake with InSAR: A Blind Reverse Event Promoted by Historical Earthquakes. Pure Appl. Geophys. 2019, 176, 577–591. [Google Scholar] [CrossRef]
- Yang, Z.G.; Liu, J.; Zhang, Y.Y.; Yang, W.; Zhang, X.M. Rapid Report of Source Parameters of 2023 M 6.2 Jishishan, Gansu Earthquake Sequence. Earth Planet. Phys. 2024, 8, 436–443. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Shi, Z.; Wang, L.; Zhang, J. Mental Health Problems among the Survivors in the Hard-Hit Areas of the Yushu Earthquake. PLoS ONE 2012, 7, e46449. [Google Scholar] [CrossRef]
- Fan, L.; Li, B.; Liao, S.; Jiang, C.; Fang, L. High-Precision Relocation of the Aftershock Sequence of the 8 January 2022, MS6.9 Menyuan Earthquake. Earthq. Sci. 2022, 35, 138–145. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Yang, Y.; Xu, Q.; Zhao, J.; Xu, L.; Liu, R. The 2021 Mw7.4 Maduo Earthquake: Coseismic Slip Model, Triggering Effect of Historical Earthquakes, and Implications for Adjacent Fault Rupture Potential. J. Geodyn. 2022, 151, 101920. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Q.Z.; Wan, Y.K. A Preliminary Analysis of the Relationship between the 2021 M_S 5.5 Earthquake in Aksay, Gansu and the 2022 M_S 5.8 and 6.0 Earthquakes in Delingha, Qinghai. Seismol. Geomagn. Obs. Res. 2022, 43 (Suppl. S1), 437–439. (In Chinese) [Google Scholar] [CrossRef]
- Li, W.; He, X.; Zhang, Y.; Wang, Y.; Liu, B.; Ni, S.; Zhang, P. The 2022 Delingha, China, Earthquake Sequence and Implication for Seismic Hazard near the Western End of the Qilian–Haiyuan Fault. Seismol. Res. Lett. 2023, 94, 1733–1746. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wen, Y. Coseismic rupture behaviors of the January and March 2022 MW > 5.5 Hala Lake earthquakes, NE Tibet, constrained by InSAR observations. Remote Sens. 2023, 15, 1124. [Google Scholar] [CrossRef]
- Xiong, W.; Xu, C.; Chen, W.; Zhao, B.; Wen, Y. The 2022 Har Lake Earthquake Sequence Highlights a Complex Fault System in the Western Qilian Shan, Northeastern Tibetan Plateau. Geophys. J. Int. 2024, 238, 1089–1102. [Google Scholar] [CrossRef]
- Rosen, P.A.; Sacco, G.F.; Gurrola, E.M.; Zabker, H.A. InSAR Scientific Computing Environment. In Proceedings of the EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear Optimization. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 338–351. [Google Scholar] [CrossRef]
- Wang, K.; Bürgmann, R. Probing Fault Frictional Properties During Afterslip Updip and Downdip of the 2017 Mw 7.3 Sarpol-e Zahab Earthquake with Space Geodesy. J. Geophys. Res. Solid Earth 2020, 125, e2020JB020319. [Google Scholar] [CrossRef]
- Lee, J.; Tsai, V.C.; Hirth, G.; Chatterjee, A.; Trugman, D.T. Fault-Network geometry influences earthquake frictional behaviour. Nature 2024, 631, 106–110. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosystems 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Harris, R.A. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. J. Geophys. Res. Solid Earth 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Wang, R.; Diao, F.; Hoechner, A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry. In Proceedings of the European Geosciences Union Conference, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016, 111, 1548–1563. [Google Scholar] [CrossRef]
- Das, S.; Henry, C. Spatial relation between main earthquake slip and its aftershock distribution. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef]
- Antolik, M.; Abercrombie, R.E.; Pan, J.; Ekström, G. Rupture characteristics of the 2003 Mw 7.6 mid-Indian Ocean earthquake: Implications for seismic properties of young oceanic lithosphere. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Vallée, M. Source time function properties indicate a strain drop independent of earthquake depth and magnitude. Nat. Commun. 2013, 4, 2606. [Google Scholar] [CrossRef]
- Obara, K.; Kato, A. Connecting slow earthquakes to huge earthquakes. Science 2016, 353, 253–257. [Google Scholar] [CrossRef]
- Jolivet, R.; Candela, T.; Lasserre, C.; Renard, F.; Klinger, Y.; Doin, M.P. The Burst-like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China. Bull. Seismol. Soc. Am. 2014, 105, 480–488. [Google Scholar] [CrossRef]
- Xie, C.; Zhu, X.L.; Yu, H. Spatial distribution of stress changes caused by the M 8.0 Wenchuan earthquake and its impact on seismic activity. Acta Seismol. Sin. 2010, 40, 688–700. [Google Scholar] [CrossRef]
- Sumy, D.F.; Cochran, E.S.; Keranen, K.M.; Wei, M.; Abers, G.A. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. Solid Earth 2014, 119, 1904–1923. [Google Scholar] [CrossRef]
- Kontoes, C.; Alatza, S.; Chousianitis, K.; Svigkas, N.; Loupasakis, C.; Atzori, S.; Apostolakis, A. Coseismic Surface Deformation, Fault Modeling, and Coulomb Stress Changes of the March 2021 Thessaly, Greece, Earthquake Sequence Based on InSAR and GPS Data. Seismol. Res. Lett. 2022, 93, 2584–2598. [Google Scholar] [CrossRef]
- Ziv, A.; Rubin, A.M. Static stress transfer and earthquake triggering: No lower threshold in sight? J. Geophys. Res. Solid Earth 2000, 105, 13631–13642. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef]
23 January 2022 Mw 5.6 | |||||
Satellite | Track | Reference Date | Secondary Date | Mean Inc.Angle | Mean Azi.Angle |
Sentinel-1A | T99A | 15 January 2022 | 27 January 2022 | 37.7911° | −10.243° |
Sentinel-1A | T4D | 20 January 2022 | 1 February 2022 | 38.0727° | 190.2117° |
25 March 2022 Mw 5.7 | |||||
Satellite | Track | Reference Date | Secondary Date | Mean Inc.Angle | Mean Azi.Angle |
Sentinel-1A | T99A | 16 March 2022 | 8 March 2022 | 37.7911° | −10.243° |
Sentinel-1A | T4D | 21 March 2022 | 2 April 2022 | 38.0727° | 190.2117° |
The Mw 5.6 Earthquake on 23 January 2022 | |||||
Length (km) | Width (km) | Strike (°) | Dip (°) | Slip (°) | |
Start Value | 7 | 5 | 329 | −80 | 0.00 |
Range | 0–20 | 0–20 | 320–360 | −90–0 | −0.2–0.2 |
The Mw 5.7 Earthquake on 25 March 2022 | |||||
Length (km) | Width (km) | Strike (°) | Dip (°) | Slip (°) | |
Start Value | 12 | 5 | 345 | −60 | 0.00 |
Range | 0–20 | 0–20 | 300–360 | −90–90 | −0.2–0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, D.; Liu, L.; Li, C.; Bai, Y.; Huang, X. Fault Kinematics of the 2022 Delingha Mw 5.6 and Mw 5.7 Earthquakes Revealed by InSAR Observations. Remote Sens. 2024, 16, 4237. https://doi.org/10.3390/rs16224237
Wang X, Wu D, Liu L, Li C, Bai Y, Huang X. Fault Kinematics of the 2022 Delingha Mw 5.6 and Mw 5.7 Earthquakes Revealed by InSAR Observations. Remote Sensing. 2024; 16(22):4237. https://doi.org/10.3390/rs16224237
Chicago/Turabian StyleWang, Xuening, Donglin Wu, Lian Liu, Chenglong Li, Yongliang Bai, and Xing Huang. 2024. "Fault Kinematics of the 2022 Delingha Mw 5.6 and Mw 5.7 Earthquakes Revealed by InSAR Observations" Remote Sensing 16, no. 22: 4237. https://doi.org/10.3390/rs16224237
APA StyleWang, X., Wu, D., Liu, L., Li, C., Bai, Y., & Huang, X. (2024). Fault Kinematics of the 2022 Delingha Mw 5.6 and Mw 5.7 Earthquakes Revealed by InSAR Observations. Remote Sensing, 16(22), 4237. https://doi.org/10.3390/rs16224237