The Implications of Plantation Forest-Driven Land Use/Land Cover Changes for Ecosystem Service Values in the Northwestern Highlands of Ethiopia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Collection, Processing, and Classification
2.3. Ecosystem Service Valuation
Sensitivity Analyses
3. Results
3.1. Accuracy Assessment
3.2. LULC Changes
3.3. Ecosystem Service Changes
4. Discussion
4.1. Analysis of LULC Changes
4.2. Implications of LULC Changes for Ecosystem Service Values
4.3. Implications for Ecosystem Management
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; de Groot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; Raskin, R.G.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- MA. Ecosystems and Human Well-Being: A Framework for Assessment. Island Press: Washington, DC, USA, 2005. [Google Scholar]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global Estimates of the Value of Ecosystems and Their Services in Monetary Units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of Land Use Change on Ecosystem Service Value Based on SDGs Report–Taking Guangxi as an Example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- TEEB. TEEB for Agriculture & Food: Scientific and Economic. UN Environment: Geneva, Switzerland, 2018. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Khanal, S.; Gurung, S.B.; Pant, K.K.; Chaudhary, P.; Dangol, D.R. Ecosystem Services and Stakeholder Analysis in Bishajari Lake and Associated Wetland Areas, Chitwan, Nepal. Int. J. Appl. Sci. Biotechnol. 2014, 2, 563–569. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of Ecosystem Service Values in Response to Land Use/Land Cover Dynamics in Munessa-Shashemene Landscape of the Ethiopian Highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The Ecological Economics of Land Degradation: Impacts on Ecosystem Service Values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Moony, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 294–299. [Google Scholar] [CrossRef]
- Cabral, P.; Feger, C.; Levrel, H.; Chambolle, M.; Basque, D. Assessing the Impact of Land-Cover Changes on Ecosystem Services: A First Step toward Integrative Planning in Bordeaux, France. Ecosyst. Serv. 2016, 22, 318–327. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking Land Use Change, Ecosystem Services and Human Well-Being: A Case Study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zhang, B.; Lu, C.; Ren, C. Impact of Land Use/Land Cover Changes on Ecosystem Services in the Nenjiang River Basin, Northeast China. Ecol. Process. 2015, 4, 11. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The Impact of Land Use/Land Cover Change on Ecosystem Services in the Central Highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Biratu, A.A.; Bedadi, B.; Gebrehiwot, S.G.; Melesse, A.M.; Nebi, T.H.; Abera, W.; Tamene, L.; Egeru, A. Impact of Landscape Management Scenarios on Ecosystem Service Values in Central Ethiopia. Land 2022, 11, 1266. [Google Scholar] [CrossRef]
- Mekuria, W.; Wondie, M.; Amare, T.; Wubet, A.; Feyisa, T.; Yitaferu, B. Restoration of Degraded Landscapes for Ecosystem Services in North-Western Ethiopia. Heliyon 2018, 4, e00764. [Google Scholar] [CrossRef]
- Mekuria, W.; Langan, S.; Noble, A.; Johnston, R. Soil Restoration after Seven Years of Exclosure Management in Northwestern Ethiopia. Land Degrad. Dev. 2017, 28, 1287–1297. [Google Scholar] [CrossRef]
- Debie, E.; Anteneh, M. Changes in Ecosystem Service Values in Response to the Planting of Eucalyptus and Acacia Species in the Gilgel Abay Watershed, Northwest Ethiopia. Trop. Conserv. Sci. 2022, 15, 19400829221108928. [Google Scholar] [CrossRef]
- Hurni, K.; Zeleke, G.; Kassie, M.; Tegegne, B.; Kassawmar, T.; Teferi, E.; Amdihun, A.; Mekuriaw, A.; Debele, B.; Deichert, G.; et al. Economics of Land Degradation (ELD) Ethiopia Case Study. Soil Degradation and Sustainable Land Management in the Rainfed Agricultural Areas of Ethiopia: An Assessment of the Economic Implications. Report for the Economics of Land Degradation Initiative. Bonn, Germany, 2015; p. 94. Available online: https://boris.unibe.ch/72796/ (accessed on 10 February 2024).
- Hurni, H. Land Degradation, Famine, and Land Resource Scenarios in Ethiopia. World Soil Erosion and Conservation, Cambridge Studies in Applied Ecology and Resource Management. Cambridge Studies in Applied Ecology and Resource Management. Pimentel, D., Ed.; 1993, pp. 27–61. Available online: https://boris.unibe.ch/77567/ (accessed on 10 February 2024).
- Tadesse, L.; Suryabhagavan, K.V.; Sridhar, G.; Legesse, G. Land Use and Land Cover Changes and Soil Erosion in Yezat Watershed, North Western Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 85–94. [Google Scholar] [CrossRef]
- Million, B.; Leykun, B. Forest Genetic Resources Working Papers State of Forest Genetic Resources in Ethiopia The Sub-Regional Workshop FAO/IPGRI/ICRAF on the Conservation, Management, Sustainable Utilization and Enhancement of Forest Genetic Resources in Sahelian and North-Sudanian Africa (Ouagadougou, Burkina Faso, 22–24 September 1998) A Co-Publication of FAO, IPGRI/SAFORGEN, DFSC and ICRAF; 2001. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/829b5756-18f4-49ed-a730-4e57122f7555/content (accessed on 10 February 2024).
- Laxen, J.; Hamalainen, J.; Pieper, G.; Hailu, B.; Roba, B. Produced for: National REDD+ Secretariat, Ministry of Environment, Forest and Climate Change, The Federal Democratic Republic of Ethiopia; SESA Report for the Implementation of REDD+ in Ethiopia, Addis Ababa, Ethiopia, 2016. Available online: https://faolex.fao.org/docs/pdf/eth204442.pdf (accessed on 10 February 2024).
- Bishaw, B. Deforestation and Land Degradation on the Ethiopian Highlands: A Strategy for Physical Recovery. Ethiopia Tree Fund Foundation, 2001. Available online: https://scholarworks.wmich.edu/cgi/viewcontent.cgi?article=1002&context=africancenter_icad_archive (accessed on 10 February 2024).
- Teketay, D. Deforestation, Wood Famine, and Environmental Degradation in Ethiopia’s Highland Ecosystems: Urgent Need for Action. Northeast Afr. Stud. 2001, 8, 53–76. [Google Scholar] [CrossRef]
- Bewket, W. Land Cover Dynamics since the 1950s in Chemoga Watershed, Blue Nile Basin, Ethiopia. Mt. Res. Dev. 2002, 22, 263–269. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, D.T.; Abele, S. Factors Affecting Small-Scale Farmers’ Land Allocation and Tree Density Decisions in an Acacia Decurrens-Based Taungya System in Fagita Lekoma District, North-Western Ethiopia. Small-Scale For. 2017, 16, 219–233. [Google Scholar] [CrossRef]
- Chanie, Y.; Abewa, A. Expansion of Acacia Decurrens Plantation on the Acidic Highlands of Awi Zone, Ethiopia, and Its Socio-Economic Benefits. Cogent Food Agric. 2021, 7, 1917150. [Google Scholar] [CrossRef]
- Bazie, Z.; Feyssa, S.; Amare, T. Effects of Acacia Decurrens Willd. Tree-Based Farming System on Soil Quality in Guder Watershed, North Western Highlands of Ethiopia. Cogent Food Agric. 2020, 6, 1743622. [Google Scholar] [CrossRef]
- Tadesse, W.; Gezahgne, A.; Tesema, T.; Shibabaw, B.; Tefera, B.; Kassa, H. Plantation Forests in Amhara Region: Challenges and Best Measures for Future Improvements. World J. Agric. Res. 2019, 7, 149–157. [Google Scholar] [CrossRef]
- World Bank. Ethiopia-Sustainable Land Management Project I and II. In Independent Evaluation Group, Project Performance Assessment Report 153559; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Alemayehu, B. GIS and Remote Sensing Based Land Use/Land Cover Change Detection and Prediction in Fagita Lekoma Woreda, Awi Zone, North Western Ethiopia. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Adgo, E.; Ayalew, Z.; Abele, S. The Impacts of Acacia Decurrens Plantations on Livelihoods in Rural Ethiopia. Land Use Policy 2021, 100, 104928. [Google Scholar] [CrossRef]
- IUCN. Afforestation and Reforestation for Climate Change Mitigation: Potentials for Pan-European Action; IUCN Programme Office for Central Europe: Warsaw, Poland, 2004. [Google Scholar]
- Mada, G.; Anjulo, A.; Gelaw, A. Estimation of Biomass and Carbon Sequestration Capacity of the Surra Mountain Plantation Forest in Gamo Highlands, Southern Ethiopia. Food Energy Secur. 2022, 11, e399. [Google Scholar] [CrossRef]
- Soboka, D.M.; Yimer, F. Restoration of Degraded Lands for Carbon Stock Enhancement and Climate Change Mitigation: The Case of Rebu Watershed, Woliso Woreda, Southwest Shoa, Ethiopia. J. Degrad. Min. Lands Manag. 2022, 9, 3387–3396. [Google Scholar] [CrossRef]
- Inge, I.; Walle, V. Carbon Sequestration in Short-Rotation Forestry Plantations and in Belgian Forest Ecosystems. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2007. [Google Scholar]
- Amanuel, W.; Yimer, F.; Karltun, E. Soil Organic Carbon Variation in Relation to Land Use Changes: The Case of Birr Watershed, Upper Blue Nile River Basin, Ethiopia. J. Ecol. Environ. 2018, 42, 16. [Google Scholar] [CrossRef]
- Alemayehu, B.; Suarez-Minguez, J.; Rosette, J.; Khan, S.A. Vegetation Trend Detection Using Time Series Satellite Data as Ecosystem Condition Indicators for Analysis in the Northwestern Highlands of Ethiopia. Remote Sens. 2023, 15, 5032. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of Long-Term Gully Dynamics in Different Agro-Ecology Settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Wondie, M.; Mekuria, W. Planting of Acacia Decurrens and Dynamics of Land Cover Change in Fagita Lekoma District in the Northwestern Highlands of Ethiopia. Mt. Res. Dev. 2018, 38, 230–239. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A. Changes in Ecosystem Service Values Strongly Influenced by Human Activities in Contrasting Agro-Ecological Environments. Ecol. Process. 2021, 10, 52. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring Land Use/Land Cover Changes, Drivers and Their Implications in Contrasting Agro-Ecological Environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A. Does Plantation Forestry Restore Biodiversity or Create Green Deserts? A Synthesis of the Effects of Land-Use Transitions on Plant Species Richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef]
- Alemayehu, B.; Suarez-Minguez, J.; Rosette, J. Modeling the Spatial Distribution of Acacia Decurrens Plantation Forests Using PlanetScope Images and Environmental Variables in the Northwestern Highlands of Ethiopia. Forests 2024, 15, 277. [Google Scholar] [CrossRef]
- Amare, T.; Amede, T.; Abewa, A.; Woubet, A.; Agegnehu, G.; Gumma, M.; Schulz, S. Remediation of Acid Soils and Soil Property Amelioration via Acacia Decurrens-Based Agroforestry System. Agrofor. Syst. 2022, 96, 329–342. [Google Scholar] [CrossRef]
- Worku, T.; Mekonnen, M.; Yitaferu, B.; Cerdà, A. Conversion of Crop Land Use to Plantation Land Use, Northwest Ethiopia. Trees For. People 2021, 3, 100044. [Google Scholar] [CrossRef]
- Penman, J. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies for the IPCC: Hayama, Japan, 2003; ISBN 4887880030. [Google Scholar]
- Ming, D.; Zhou, T.; Wang, M.; Tan, T. Land Cover Classification Using Random Forest with Genetic Algorithm-Based Parameter Optimization. J. Appl. Remote Sens. 2016, 10, 035021. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Dash, P.; Sanders, S.L.; Parajuli, P.; Ouyang, Y. Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data in an Agricultural Watershed. Remote Sens. 2023, 15, 4020. [Google Scholar] [CrossRef]
- Niccolucci, V.; Coscieme, L.; Marchettini, N. Benefit Transfer and the Economic Value of Biocapacity: Introducing the Ecosystem Service Yield Factor. Ecosyst. Serv. 2021, 48, 101256. [Google Scholar] [CrossRef]
- Plummer, M.L. Assessing Benefit Transfer for the Valuation of Ecosystem Services. Front. Ecol. Environ. 2009, 7, 38–45. [Google Scholar] [CrossRef]
- Wilson, M.A.; Hoehn, J.P. Valuing Environmental Goods and Services Using Benefit Transfer: The State-of-the Art and Science. Ecol. Econ. 2006, 60, 335–342. [Google Scholar] [CrossRef]
- Mendoza-González, G.; Martínez, M.L.; Lithgow, D.; Pérez-Maqueo, O.; Simonin, P. Land Use Change and Its Effects on the Value of Ecosystem Services along the Coast of the Gulf of Mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in Ecosystem Service Values in the San Antonio Area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Rotich, B.; Kindu, M.; Kipkulei, H.; Kibet, S.; Ojwang, D. Impact of Land Use/Land Cover Changes on Ecosystem Service Values in the Cherangany Hills Water Tower, Kenya. Environ. Chall. 2022, 8, 100576. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the Impacts of Land Use/Land Cover Changes on Ecosystem Service Values: The Case of the Andassa Watershed in the Upper Blue Nile Basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Zhang, P.; He, L.; Fan, X.; Huo, P.; Liu, Y.; Zhang, T.; Pan, Y.; Yu, Z. Ecosystem Service Value Assessment and Contribution Factor Analysis of Land Use Change in Miyun County, China. Sustainability 2015, 7, 7333–7356. [Google Scholar] [CrossRef]
- Temesgen, H.; Wu, W.; Shi, X.; Yirsaw, E.; Bekele, B.; Kindu, M. Variation in Ecosystem Service Values in an Agroforestry Dominated Landscape in Ethiopia: Implications for Land Use and Conservation Policy. Sustainability 2018, 10, 1126. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Criticism on Elasticity-Sensitivity Coefficient for Assessing the Robustness and Sensitivity of Ecosystem Services Values. Ecosyst. Serv. 2016, 20, 66–68. [Google Scholar] [CrossRef]
- Lea, C.; Curtis, A. Thematic Accuracy Assessment Procedures National Park Service Vegetation Inventory, Version 2.0 Natural Resource Report NPS/2010/NRP-2010/2014; U.S. Department of the Interior: Colorado, CO, USA, 2010. [Google Scholar]
- Rozenstein, O.; Karnieli, A. Comparison of Methods for Land-Use Classification Incorporating Remote Sensing and GIS Inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Hassen, E.E.; Assen, M. Land Use/Cover Dynamics and Its Drivers in Gelda Catchment, Lake Tana Watershed, Ethiopia. Environ. Syst. Res. 2018, 6, 4. [Google Scholar] [CrossRef]
- Tesfaye, S.; Guyassa, E.; Joseph Raj, A.; Birhane, E.; Wondim, G.T. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia. Int. J. For. Res. 2014, 2014, 614249. [Google Scholar] [CrossRef]
- Negese, A. Impacts of Land Use and Land Cover Change on Soil Erosion and Hydrological Responses in Ethiopia. Appl. Environ. Soil Sci. 2021, 2021, 6669438. [Google Scholar] [CrossRef]
- Bewket, W.; Abebe, S. Land-Use and Land-Cover Change and Its Environmental Implications in a Tropical Highland Watershed, Ethiopia. Int. J. Environ. Stud. 2013, 70, 126–139. [Google Scholar] [CrossRef]
- Regasa, M.S.; Nones, M.; Adeba, D. A Review on Land Use and Land Cover Change in Ethiopian Basins. Land 2021, 10, 585. [Google Scholar] [CrossRef]
- Awoke, B.G. Drivers and Implications of Land Use and Land Cover Change in the Central Highlands of Ethiopia: Evidence from Remote Sensing and Socio-Demographic Data Integration. Artic. Ethiop. J. Soc. Sci. Humanit. 2014, 10, 1–23. [Google Scholar]
- Vatitsi, K.; Ioannidou, N.; Mirli, A.; Siachalou, S.; Kagalou, I.; Latinopoulos, D.; Mallinis, G. LULC Change Effects on Environmental Quality and Ecosystem Services Using EO Data in Two Rural River Basins in Thrace, Greece. Land 2023, 12, 1140. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Afework, A.; Minale, A.S.; Teketay, D.; Terefe, B. Spatio-Temporal Dynamics of Acacia Decurrens Plantations in Awi Zone Highlands, Northwest Ethiopia. Pap. Appl. Geogr. 2023, 9, 442–463. [Google Scholar] [CrossRef]
- Genanew, T.; Argaw, M.; Adgo, E. Farmers Soil Management Practices and Their Perceptions to Soil Acidity at Ankesha District of Awi Zone, Northwestern Ethiopia. Libyan Agric. Res. Cent. J. Int. 2012, 3, 64–72. [Google Scholar] [CrossRef]
- Mola, A.; Linger, E. Effects of Acacia Decurrens (Green Wattle) Tree on Selected Soil Physico-Chemical Properties North-Western Ethiopia. Res. J. Agric. Environ. Manag. 2017, 6, 95–103. [Google Scholar]
- Yimam, A.; Mekuriaw, A.; Assefa, D.; Bewket, W. Impact of Eucalyptus Plantations on Ecosystem Services in the Upper Blue Nile Basin of Ethiopia. Environ. Sustain. Indic. 2024, 22, 100393. [Google Scholar] [CrossRef]
- Kuma, H.G.; Feyessa, F.F.; Demissie, T.A. Land-Use/Land-Cover Changes and Implications in Southern Ethiopia: Evidence from Remote Sensing and Informants. Heliyon 2022, 8, e09071. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Bongers, F.; Tennigkeit, T. Degraded Forests in Eastern Africa: Management and Restoration; Earthscan: Oxfordshire, UK, 2010; ISBN 9781844077670. [Google Scholar]
- Assefa, W.W.; Eneyew, B.G.; Wondie, A. The Impacts of Land-Use and Land-Cover Change on Wetland Ecosystem Service Values in Peri-Urban and Urban Area of Bahir Dar City, Upper Blue Nile Basin, Northwestern Ethiopia. Ecol. Process. 2021, 10, 39. [Google Scholar] [CrossRef]
- Teferi, E.; Uhlenbrook, S.; Bewket, W.; Wenninger, J.; Simane, B. The Use of Remote Sensing to Quantify Wetland Loss in the Choke Mountain Range, Upper Blue Nile Basin, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2415–2428. [Google Scholar] [CrossRef]
- Berkessa, Y.W.; Bulto, T.W.; Moisa, M.B.; Gurmessa, M.M.; Werku, B.C.; Juta, G.Y.; Negash, D.A.; Gemeda, D.O. Impacts of Urban Land Use and Land Cover Change on Wetland Dynamics in Jimma City, Southwestern Ethiopia. J. Water Clim. Chang. 2023, 14, 2397–2415. [Google Scholar] [CrossRef]
- Assefa, W.W.; Eneyew, B.G.; Wondie, A. The Driving Forces of Wetland Degradation in Bure and Wonberma Woredas, Upper Blue Nile Basin, Ethiopia. Environ. Monit. Assess. 2022, 194, 838. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current State of Knowledge Regarding the World’s Wetlands and Their Future under Global Climate Change: A Synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Prog. Plann. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Estimating the Total Ecosystem Services Value of Eastern Afromontane Biodiversity Hotspots in Response to Landscape Dynamics. Environ. Sustain. Indic. 2022, 14, 100178. [Google Scholar] [CrossRef]
- Tolessa, T.; Kidane, M.; Bezie, A. Assessment of the Linkages between Ecosystem Service Provision and Land Use/Land Cover Change in Fincha Watershed, North-Western Ethiopia. Heliyon 2021, 7, e07673. [Google Scholar] [CrossRef]
- Tareke, A.T. Ecosystem Service Reason to Save Wetlands: A Case of Geray Wetland, North Western Ethiopia. East Afr. J. Environ. Nat. Resour. 2023, 6, 459–472. [Google Scholar] [CrossRef]
- Muche, M.; Yemata, G.; Molla, E.; Adnew, W.; Muasya, A.M. Land Use and Land Cover Changes and Their Impact on Ecosystem Service Values in the North-Eastern Highlands of Ethiopia. PLoS ONE 2023, 18, e0289962. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating Global Ecosystem Service Values and Its Response to Land Surface Dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Paquette, A.; Messier, C. The Role of Plantations in Managing the World’s Forests in the Anthropocene. Front. Ecol. Environ. 2014, 8, 27–34. [Google Scholar] [CrossRef]
- Baral, H.; Guariguata, M.R.; Keenan, R.J. A Proposed Framework for Assessing Ecosystem Goods and Services from Planted Forests. Ecosyst. Serv. 2016, 22, 260–268. [Google Scholar] [CrossRef]
- Farooq, T.H.; Shakoor, A.; Wu, X.; Li, Y.; Rashid, M.H.U.; Zhang, X.; Gilani, M.M.; Kumar, U.; Chen, X.; Yan, W. Perspectives of Plantation Forests in the Sustainable Forest Development of China. IForest 2021, 14, 166–174. [Google Scholar] [CrossRef]
- Woldeyohannes, A.; Cotter, M.; Biru, W.D.; Kelboro, G. Assessing Changes in Ecosystem Service Values over 1985-2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land 2020, 9, 37. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kassahun, G.; Yimer, F.; Brüggemann, N.; Glaser, B.; Glaser Agroforestry, B. Agroforestry Practices and On-Site Charcoal Production Enhance Soil Fertility and Climate Change Mitigation in Northwestern Ethiopia. Agron. Sustain. Dev. 2022, 42, 80. [Google Scholar] [CrossRef]
- Beshir, M.; Yimer, F.; Brüggemann, N.; Tadesse, M. Soil Properties of a Tef-Acacia Decurrens-Charcoal Production Rotation System in Northwestern Ethiopia. Soil Syst. 2022, 6, 44. [Google Scholar] [CrossRef]
- Bauhus, J.; van der Meer, P.J.; Kanninen, M. Ecosystem Goods and Services from Plantation Forests; Earthscan: London, UK, 2010; ISBN 9781849776417. [Google Scholar]
- Tully, K.; Ryals, R. Nutrient Cycling in Agroecosystems: Balancing Food and Environmental Objectives. Agroecol. Sustain. Food Syst. 2017, 41, 761–798. [Google Scholar] [CrossRef]
LULC | Description |
---|---|
Cropland | Areas cultivated for rain-fed and/or irrigation-based crops. |
Grassland | Areas covered with grasses frequently grazed upon by animals. |
Natural Forest | Areas covered by natural forest trees. |
Plantation Forest | Areas predominantly covered by Acacia decurrens plantations. |
Urban Area | Areas characterized by dense settlements and built-up infrastructure. |
Wetland | Waterlogged areas predominantly covered by long grasses and water bodies. |
LULC Class | Equivalent Biome | Ecosystem Service Value Coefficient (USD ha−1yr−1) | |
---|---|---|---|
Global [1] | Local [8] | ||
Cropland | Cropland | 92 | 225.56 |
Grassland | Grass/Rangeland | 232 | 293.25 |
Natural Forest | Tropical Forest | 2007 | 986.69 |
Plantation Forest | Tropical Forest | 2007 | 986.69 |
Urban Area | Urban | 0 | 0 |
Wetland | Wetland | 19580 | 8103.5 |
Biome | Cropland | Grassland | Natural Forest | Plantation Forest | Wetland | |
---|---|---|---|---|---|---|
Ecosystem Service | ||||||
Provisioning services | ||||||
Water supply | 8 | 8 | 2117 | |||
Food production | 187.56 | 117.45 | 32 | 32 | 41 | |
Raw material | 51.24 | 51.24 | ||||
Genetic resources | 41 | 41 | ||||
Regulating services | ||||||
Water regulation | 3 | 6 | 6 | 5445 | ||
Water treatment | 87 | 136 | 136 | 431.5 | ||
Erosion control | 29 | 245 | 245 | |||
Climate regulation | 223 | 223 | ||||
Biological control | 24 | 23 | ||||
Gas regulation | 7 | 13.68 | 13.68 | |||
Disturbance regulation | 5 | 5 | ||||
Supporting services | ||||||
Nutrient cycling | 184.4 | 184.4 | ||||
Pollination | 14 | 25 | 7.27 | 7.27 | ||
Soil formation | 1 | 10 | 10 | |||
Habitant/refugia | 17.3 | 17.3 | ||||
Cultural services | ||||||
Recreation | 0.8 | 4.8 | 4.8 | 69 | ||
Cultural | 2 | 2 | ||||
Total | 225.56 | 293.35 | 986.69 | 986.69 | 8103.5 |
Year | 1985 | 2000 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
LULC | UA | PA | UA | PA | UA | PA | UA | PA | |
Cropland | 0.91 | 0.92 | 0.99 | 0.99 | 0.96 | 0.98 | 0.96 | 0.98 | |
Grassland | 0.94 | 0.93 | 0.99 | 0.99 | 0.95 | 0.95 | 0.97 | 0.93 | |
Natural Forest | 0.99 | 0.99 | 0.99 | 0.99 | 0.97 | 0.96 | 0.96 | 0.98 | |
Plantation Forest | - | - | 0.92 | 0.90 | 0.93 | 0.92 | 0.97 | 0.96 | |
Urban Area | - | - | 1.00 | 0.6 | 1.00 | 0.81 | 1.00 | 0.99 | |
Wetland | 0.9 | 0.99 | 0.94 | 0.97 | 0.87 | 0.95 | 1.00 | 0.96 | |
Overall Accuracy | 0.97 | 0.98 | 0.96 | 0.97 | |||||
Kappa | 0.94 | 0.97 | 0.94 | 0.96 |
Year | 1985 | 2000 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
LULC | Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Cropland | 36,204.57 | 53.66 | 45,439.56 | 67.35 | 44,518.75 | 65.99 | 35,659.87 | 52.86 | |
Grassland | 13,873.77 | 20.56 | 12,594.42 | 18.67 | 9574.38 | 14.19 | 7435.89 | 11.02 | |
Natural Forest | 7689.24 | 11.4 | 3185.19 | 4.72 | 2954.52 | 4.38 | 3193.33 | 4.73 | |
Plantation Forest | _ | _ | 273.24 | 0.4 | 6795.63 | 10.07 | 18,979.7 | 28.13 | |
Urban Area | _ | _ | 283.14 | 0.42 | 694.91 | 1.03 | 937.73 | 1.39 | |
Wetland | 9700.47 | 14.38 | 5692.5 | 8.44 | 2929.86 | 4.34 | 1261.53 | 1.87 | |
Total | 67,468.05 | 100 | 67,468.05 | 100 | 67,468.05 | 100 | 67,468.05 | 100 |
Biome | ESV (Million USD) | ESV Change (Million USD and %) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1985–2000 | 2000–2015 | 2015–2020 | 1985–2020 | |||||||||
1985 | 2000 | 2015 | 2020 | USD | % | USD | % | USD | % | USD | % | |
Cropland | 18.22 | 14.29 | 10.17 | 7.46 | −3.93 | −21.57 | −4.12 | −28.83 | −2.71 | −26.65 | −10.76 | −59.06 |
Grassland | 9.04 | 5.15 | 2.84 | 2.02 | −3.89 | −43.03 | −2.31 | −44.85 | −0.82 | −28.87 | −7.02 | −77.65 |
Natural | 16.92 | 4.38 | 2.95 | 2.9 | −12.54 | −74.11 | −1.43 | −32.65 | −0.05 | −1.69 | −14.02 | −82.86 |
Plantation | - | 0.38 | 6.79 | 17.37 | 0.38 | _ | 6.41 | 1686.84 | 10.58 | 155.82 | 17.37 | _ |
Wetland | 175.34 | 64.29 | 24.04 | 9.48 | −111.05 | −63.33 | −40.25 | −62.61 | −14.56 | −60.57 | −68.39 | −94.59 |
Total | 219.52 | 88.48 | 46.79 | 39.23 | −131.04 | −59.69 | −41.69 | −47.12 | −7.56 | −16.16 | −56.43 | −82.13 |
Ecosystem Service | ESV (Million USD) | ESV Change in % | |||
---|---|---|---|---|---|
1985 | 2000 | 2015 | 2020 | 1985–2020 | |
Provisioning services | 67.74 | 31.7 | 17.3 | 12.26 | −55.48 |
Water supply | 45.94 | 16.83 | 6.36 | 2.64 | −43.3 |
Food production | 20.22 | 14.42 | 10.03 | 7.72 | −12.5 |
Raw material | 0.88 | 0.25 | 0.51 | 1.05 | 0.17 |
Genetic resources | 0.7 | 0.2 | 0.4 | 0.84 | 0.14 |
Regulating services | 144.48 | 53.79 | 26.17 | 21.62 | −122.86 |
Water regulation | 118.01 | 43.28 | 16.24 | 6.51 | −111.5 |
Water treatment | 14.36 | 5.61 | 3.47 | 3.9 | −10.46 |
Erosion control | 5.1 | 1.69 | 2.7 | 5.24 | 0.14 |
Climate regulation | 3.82 | 1.07 | 2.2 | 4.59 | 0.77 |
Biological control | 2.65 | 1.92 | 1.31 | 0.95 | −1.7 |
Gas regulation | 0.09 | 0.02 | 0.2 | 0.33 | −0.12 |
Disturbance regulation | 0.04 | 0.02 | 0.05 | 0.1 | 0.01 |
Supporting services | 5.66 | 2.4 | 3.05 | 5.12 | −0.54 |
Nutrient cycling | 3.16 | 0.89 | 1.82 | 3.79 | 0.63 |
Pollination | 2.03 | 1.36 | 0.95 | 0.76 | −1.27 |
Soil formation | 0.17 | 0.07 | 0.11 | 0.21 | 0.04 |
Habitant/refugia | 0.3 | 0.08 | 0.17 | 0.36 | 0.06 |
Cultural services | 1.64 | 0.59 | 0.28 | 0.23 | −1.41 |
Recreation | 1.6 | 0.58 | 0.26 | 0.18 | −1.42 |
Cultural | 0.03 | 0.01 | 0.02 | 0.04 | 0.01 |
Total | 219.52 | 88.48 | 46.79 | 39.23 | −180.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemayehu, B.; Suarez-Minguez, J.; Rosette, J. The Implications of Plantation Forest-Driven Land Use/Land Cover Changes for Ecosystem Service Values in the Northwestern Highlands of Ethiopia. Remote Sens. 2024, 16, 4159. https://doi.org/10.3390/rs16224159
Alemayehu B, Suarez-Minguez J, Rosette J. The Implications of Plantation Forest-Driven Land Use/Land Cover Changes for Ecosystem Service Values in the Northwestern Highlands of Ethiopia. Remote Sensing. 2024; 16(22):4159. https://doi.org/10.3390/rs16224159
Chicago/Turabian StyleAlemayehu, Bireda, Juan Suarez-Minguez, and Jacqueline Rosette. 2024. "The Implications of Plantation Forest-Driven Land Use/Land Cover Changes for Ecosystem Service Values in the Northwestern Highlands of Ethiopia" Remote Sensing 16, no. 22: 4159. https://doi.org/10.3390/rs16224159
APA StyleAlemayehu, B., Suarez-Minguez, J., & Rosette, J. (2024). The Implications of Plantation Forest-Driven Land Use/Land Cover Changes for Ecosystem Service Values in the Northwestern Highlands of Ethiopia. Remote Sensing, 16(22), 4159. https://doi.org/10.3390/rs16224159