Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Pre-Processing
3.1.1. Image Pairs Generation
3.1.2. Four-Quadrant Block Image Registration
3.2. Multi-Window Fusion Method
3.3. Error Correction and Accuracy Evaluation
4. Results
4.1. Four-Quadrant Block Image Registration
4.2. Multi-Window Fusion Method
4.3. Two-Dimensional Displacement Field of Sedongpu Glacier
5. Discussion
5.1. Acceleration on Sedongpu Glacier Movement by Milin Earthquake
5.2. Failure Pattern of the 21 December 2017 Disaster Chain
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, S.K.; Cox, S.C.; Owens, I.F. Rock Avalanches and Other Landslides in the Central Southern Alps of New Zealand: A Regional Study Considering Possible Climate Change Impacts. Landslides 2011, 8, 33–48. [Google Scholar] [CrossRef]
- Haeberli, W.; Huggel, C.; Kääb, A.; Zgraggen-Oswald, S.; Polkvoj, A.; Galushkin, I.; Zotikov, I.; Osokin, N. The Kolka-Karmadon Rock/Ice Slide of 20 September 2002: An Extraordinary Event of Historical Dimensions in North Ossetia, Russian Caucasus. J. Glaciol. 2004, 50, 533–546. [Google Scholar] [CrossRef]
- Jacquemart, M.; Loso, M.; Leopold, M.; Welty, E.; Berthier, E.; Hansen, J.S.S.; Sykes, J.; Tiampo, K. What Drives Large-Scale Glacier Detachments? Insights from Flat Creek Glacier, St. Elias Mountains, Alaska. Geology 2020, 48, 703–707. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; De Vries, M.V.W.; Mergili, M.; et al. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.-A.; et al. Massive Collapse of Two Glaciers in Western Tibet in 2016 after Surge-like Instability. Nat. Geosci. 2018, 11, 114–120. [Google Scholar] [CrossRef]
- Martha, T.R.; Roy, P.; Jain, N.; Vinod Kumar, K.; Reddy, P.S.; Nalini, J.; Sharma, S.V.S.P.; Shukla, A.K.; Durga Rao, K.H.V.; Narender, B.; et al. Rock Avalanche Induced Flash Flood on 07 February 2021 in Uttarakhand, India—A Photogeological Reconstruction of the Event. Landslides 2021, 18, 2881–2893. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Jeelani, G. Deformation Kinematics of Main Central Thrust Zone (MCTZ) in the Western Himalayas. J. Earth Sci. 2022, 33, 452–461. [Google Scholar] [CrossRef]
- Yin, Y.; Xing, A. Aerodynamic Modeling of the Yigong Gigantic Rock Slide-Debris Avalanche, Tibet, China. Bull. Eng. Geol. Environ. 2012, 71, 149–160. [Google Scholar] [CrossRef]
- Chen, G.; Bartholomew, M.; Liu, D.; Cao, K.; Feng, M.; Wang, D. Paleo-Earthquakes along the Zheduotang Fault, Xianshuihe Fault System, Eastern Tibet: Implications for Seismic Hazard Evaluation. J. Earth Sci. 2022, 33, 1233–1245. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Wenjing, Z. Identification of Glaciers with Surge Characteristics on the Tibetan Plateau. Ann. Glaciol. 1992, 16, 168–172. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Z.; An, B.; Chen, Y.; Zhao, C.; Li, C.; Wang, Y.; Wang, W.; Li, J.; Wu, G.; et al. Early Warning System for Ice Collapses and River Blockages in the Sedongpu Valley, Southeastern Tibetan Plateau. Nat. Hazards Earth Syst. Sci. 2023, 23, 3015–3029. [Google Scholar] [CrossRef]
- Delaney, K.B.; Evans, S.G. The 2000 Yigong Landslide (Tibetan Plateau), Rockslide-Dammed Lake and Outburst Flood: Review, Remote Sensing Analysis, and Process Modelling. Geomorphology 2015, 246, 377–393. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive Analyses of the Initiation and Entrainment Processes of the 2000 Yigong Catastrophic Landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Pandey, P.; Chauhan, P.; Bhatt, C.M.; Thakur, P.K.; Kannaujia, S.; Dhote, P.R.; Roy, A.; Kumar, S.; Chopra, S.; Bhardwaj, A.; et al. Cause and Process Mechanism of Rockslide Triggered Flood Event in Rishiganga and Dhauliganga River Valleys, Chamoli, Uttarakhand, India Using Satellite Remote Sensing and in Situ Observations. J. Indian. Soc. Remote Sens. 2021, 49, 1011–1024. [Google Scholar] [CrossRef]
- Cook, K.L.; Rekapalli, R.; Dietze, M.; Pilz, M.; Cesca, S.; Rao, N.P.; Srinagesh, D.; Paul, H.; Metz, M.; Mandal, P.; et al. Detection and Potential Early Warning of Catastrophic Flow Events with Regional Seismic Networks. Science 2021, 374, 87–92. [Google Scholar] [CrossRef]
- Gao, H.; Gao, Y.; Li, B.; Yin, Y.; Yang, C.; Wan, J.; Zhang, T. The Dynamic Simulation and Potential Hazards Analysis of the Yigong Landslide in Tibet, China. Remote Sens. 2023, 15, 1322. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending Estimates of 2003–2008 Glacier Mass Balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Yin, Y.; Li, B.; Gao, Y.; Wang, W.; Zhang, S.; Zhang, N. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. J. Rock. Mech. Geotech. Eng. 2023, 15, 66–101. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Y.; Li, B.; Liu, X.; Wang, M.; Gao, Y.; Wan, J.; Gnyawali, K.R. Characteristics and Dynamic Analysis of the February 2021 Long-Runout Disaster Chain Triggered by Massive Rock and Ice Avalanche at Chamoli, Indian Himalaya. J. Rock Mech. Geotech. Eng. 2023, 15, 296–308. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, Y.; Li, B.; Yin, Y.; Liu, X.; Gao, H.; Yang, W. Characteristics of Rock-Ice Avalanches and Geohazard-Chains in the Parlung Zangbo Basin, Tibet, China. Geomorphology 2023, 422, 108549. [Google Scholar] [CrossRef]
- Gao, Y.; Li, B.; Gao, H.; Gao, S.; Wang, M.; Liu, X. Risk Assessment of the Sedongpu High-Altitude and Ultra-Long-Runout Landslide in the Lower Yarlung Zangbo River, China. Bull. Eng. Geol. Environ. 2023, 82, 360. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, X.; You, Y.; Hu, X.; Liu, W.; Li, Y. Landslides and Dammed Lakes Triggered by the 2017 Ms6.9 Milin Earthquake in the Tsangpo Gorge. Landslides 2019, 16, 993–1001. [Google Scholar] [CrossRef]
- Xiong, W.; Chen, W.; Wen, Y.; Liu, G.; Nie, Z.; Qiao, X.; Xu, C. Insight into the 2017 Mainling Mw 6.5 Earthquake: A Complicated Thrust Event beneath the Namche Barwa Syntaxis. Earth Planets Space 2019, 71, 71. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Y.; Li, B.; Gao, Y.; Wang, M. Characteristics and Dynamic Analysis of the October 2018 Long-Runout Disaster Chains in the Yarlung Zangbo River Downstream, Tibet, China. Nat. Hazards 2022, 113, 1563–1582. [Google Scholar] [CrossRef]
- Fischer, L.; Huggel, C.; Kääb, A.; Haeberli, W. Slope Failures and Erosion Rates on a Glacierized High-mountain Face under Climatic Changes. Earth Surf. Process. Landf. 2013, 38, 836–846. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Avouac, J.-P.; Leprince, S. Geodetic Imaging Using Optical Systems. In Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 387–424. ISBN 978-0-444-53803-1. [Google Scholar]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.-P. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Altena, B.; Scambos, T.; Fahnestock, M.; Kääb, A. Extracting Recent Short-Term Glacier Velocity Evolution over Southern Alaska and the Yukon from a Large Collection of Landsat Data. Cryosphere 2019, 13, 795–814. [Google Scholar] [CrossRef]
- Bontemps, N.; Lacroix, P.; Doin, M.-P. Inversion of Deformation Fields Time-Series from Optical Images, and Application to the Long Term Kinematics of Slow-Moving Landslides in Peru. Remote Sens. Environ. 2018, 210, 144–158. [Google Scholar] [CrossRef]
- Mazzanti, P.; Caporossi, P.; Muzi, R. Sliding Time Master Digital Image Correlation Analyses of CubeSat Images for Landslide Monitoring: The Rattlesnake Hills Landslide (USA). Remote Sens. 2020, 12, 592. [Google Scholar] [CrossRef]
- Stumpf, A.; Michéa, D.; Malet, J.-P. Improved Co-Registration of Sentinel-2 and Landsat-8 Imagery for Earth Surface Motion Measurements. Remote Sens. 2018, 10, 160. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, L.; Liao, M.; Feng, G.; Dong, J.; Ao, M.; Yu, Y. Quantifying the Spatio-Temporal Patterns of Dune Migration near Minqin Oasis in Northwestern China with Time Series of Landsat-8 and Sentinel-2 Observations. Remote Sens. Environ. 2020, 236, 111498. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Zhang, L.; Shen, Q.; Xiong, Z.; Liao, M. The Precursory 3D Displacement Patterns and Their Implicit Collapse Mechanism of the Ice-Rock Avalanche Events Occurred in Sedongpu Basin Revealed by Optical and SAR Observations. Remote Sens. 2023, 15, 2818. [Google Scholar] [CrossRef]
- Yang, C.; Wei, C.; Ding, H.; Wei, Y.; Zhu, S.; Li, Z. Inversion of Glacier 3D Displacement from Sentinel-1 and Landsat 8 Images Based on Variance Component Estimation: A Case Study in Shishapangma Peak, Tibet, China. Remote Sens. 2022, 15, 4. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, L.; Yin, Y.; Liu, X.; Li, B.; Ren, C.; Liu, D. Failure Process and Three-Dimensional Motions of Mining-Induced Jianshanying Landslide in China Observed by Optical, LiDAR and SAR Datasets. GIScience Remote Sens. 2023, 60, 2268367. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Hu, X.; Lu, Z.; Guo, J.; Wang, Y.; Wang, H.; Wang, S.; Zhou, X. Glacier Retreat in Eastern Himalaya Drives Catastrophic Glacier Hazard Chain. Geophys. Res. Lett. 2024, 51, e2024GL108202. [Google Scholar] [CrossRef]
- Zhao, B.; Li, W.; Wang, Y.; Lu, J.; Li, X. Landslides Triggered by the Ms 6.9 Nyingchi Earthquake, China (18 November 2017): Analysis of the Spatial Distribution and Occurrence Factors. Landslides 2019, 16, 765–776. [Google Scholar] [CrossRef]
- Zhang, T. Massive Glacier-Related Geohazard Chains and Dynamics Analysis at the Yarlung Zangbo River Downstream of Southeastern Tibetan Plateau. Bull. Eng. Geol. Environ. 2023, 82, 426. [Google Scholar] [CrossRef]
- Necsoiu, M.; Leprince, S.; Hooper, D.M.; Dinwiddie, C.L.; McGinnis, R.N.; Walter, G.R. Monitoring Migration Rates of an Active Subarctic Dune Field Using Optical Imagery. Remote Sens. Environ. 2009, 113, 2441–2447. [Google Scholar] [CrossRef]
- Scherler, D.; Leprince, S.; Strecker, M. Glacier-Surface Velocities in Alpine Terrain from Optical Satellite Imagery—Accuracy Improvement and Quality Assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Binet, R.; Lewis, K.W.; Aharonson, O.; Avouac, J.-P. Influence of Camera Distortions on Satellite Image Registration and Change Detection Applications. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; IEEE: Boston, MA, USA, 2008; pp. II-1072–II-1075. [Google Scholar]
- Vermeesch, P.; Drake, N. Remotely Sensed Dune Celerity and Sand Flux Measurements of the World’s Fastest Barchans (Bodélé, Chad). Geophys. Res. Lett. 2008, 35, 2008GL035921. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The Plans, the Reality, and the Legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Keene, L. User’s Guide to COSI-CORR Co-Registration of Optically Sensed Images and Correlation; California Institute of Technology: Pasadena, CA, USA, 2009; Volume 38, p. 49s. [Google Scholar]
- Baird, T.; Bristow, C.; Vermeesch, P. Measuring Sand Dune Migration Rates with COSI-Corr and Landsat: Opportunities and Challenges. Remote Sens. 2019, 11, 2423. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Li, Z.; Shan, X.; Du, Y.; Wang, H. Spatio-Temporal Error Sources Analysis and Accuracy Improvement in Landsat 8 Image Ground Displacement Measurements. Remote Sens. 2016, 8, 937. [Google Scholar] [CrossRef]
- Leprince, S.; Ayoub, F.; Klinger, Y.; Avouac, J.-P. Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): An Operational Methodology for Ground Deformation Measurements. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; IEEE: Barcelona, Spain, 2007; pp. 1943–1946. [Google Scholar]
- Yang, W.; Wang, Y.; Wang, Y.; Ma, C.; Ma, Y. Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images. Landslides 2020, 17, 659–668. [Google Scholar] [CrossRef]
- Kääb, A. Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya. Remote Sens. Environ. 2005, 94, 463–474. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Allemand, P.; Ulrich, P. Surface Reconstruction and Landslide Displacement Measurements with Pléiades Satellite Images. ISPRS J. Photogramm. Remote Sens. 2014, 95, 1–12. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Trouve, E. Deriving Large-Scale Glacier Velocities from a Complete Satellite Archive: Application to the Pamir–Karakoram–Himalaya. Remote Sens. Environ. 2015, 162, 55–66. [Google Scholar] [CrossRef]
- Ali, E.; Xu, W.; Ding, X. Improved Optical Image Matching Time Series Inversion Approach for Monitoring Dune Migration in North Sinai Sand Sea: Algorithm Procedure, Application, and Validation. ISPRS J. Photogramm. Remote Sens. 2020, 164, 106–124. [Google Scholar] [CrossRef]
- Lacroix, P.; Bièvre, G.; Pathier, E.; Kniess, U.; Jongmans, D. Use of Sentinel-2 Images for the Detection of Precursory Motions before Landslide Failures. Remote Sens. Environ. 2018, 215, 507–516. [Google Scholar] [CrossRef]
- Ding, L.; Zhong, D.; Yin, A.; Kapp, P.; Harrison, T.M. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth Planet. Sci. Lett. 2001, 192, 423–438. [Google Scholar] [CrossRef]
- Gao, H.; Yin, Y.; Li, B.; Gao, Y.; Zhang, T.; Liu, X.; Wan, J. Geomorphic Evolution of the Sedongpu Basin after Catastrophic Ice and Rock Avalanches Triggered by the 2017 Ms6.9 Milin Earthquake in the Yarlung Zangbo River Area, China. Landslides 2023, 20, 2327–2341. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, K.; Liu, S.; Nie, Y.; Han, Y. Comprehensive interpretation of the Sedongpu glacier-related mass flows in the eastern Himalayan Syntaxis. J. Mt. Sci. 2022, 19, 2469–2486. [Google Scholar] [CrossRef]
Optical Images | Sentinel-2 | SV-1 | BJ-2 |
---|---|---|---|
Band | NIR | Panchromatic | Panchromatic |
Resolution (m) | 10 | 0.5 | 0.8 |
Numbers | 6 | 1 | 1 |
Acquisition dates | November 2016–December 2017 | 7 November 2017 | 21 December 2017 |
Events | Optical Images | Dates | Stages |
---|---|---|---|
Sentinel-2 | 20 November 2016 | pre-seismic | |
Sentinel-2 | 10 December 2016 | ||
Sentinel-2 | 19 January 2017 | ||
Sentinel-2 | 18 February 2017 | ||
SV-1 | 7 November 2017 | co-seismic | |
Milin earthquake | 18 November 2017 | ||
BJ-2 | 21 December 2017 | ||
Sentinel-2 | 10 December 2017 | post-seismic | |
Sentinel-2 | 20 December 2017 | ||
Disaster chain | 21 December 2017 |
Period | Image Pairs |
---|---|
Pre-seismic | 20 November 2016–10 December 2016 20 November 2016–19 January 2017 20 November 2016–18 February 2017 10 December 2016–19 January 2017 10 December 2016–18 February 2017 19 January 2017–18 February 2017 |
Co-seismic | 7 November 2017 (SV-1)–21 December 2017 (BJ-2) excludes 10 December 2017–20 December 2017 |
Post-seismic | 10 December 2017–20 December 2017 |
Optical Sensors | SV-1, BJ-2 | Sentinel-2 | |
---|---|---|---|
Search window size (pixels) | Initial size | 256 | 64 |
Final size | 32 | 32 | |
Steps (pixels) | 4 × 4 | 1 × 1 | |
Robust iterations | 2 | 2 | |
Frequency mask | 0.9 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Zhao, C.; Li, B.; Liu, X.; Gao, Y.; Lou, J. Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images. Remote Sens. 2024, 16, 4003. https://doi.org/10.3390/rs16214003
Xin Y, Zhao C, Li B, Liu X, Gao Y, Lou J. Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images. Remote Sensing. 2024; 16(21):4003. https://doi.org/10.3390/rs16214003
Chicago/Turabian StyleXin, Yubin, Chaoying Zhao, Bin Li, Xiaojie Liu, Yang Gao, and Jianqi Lou. 2024. "Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images" Remote Sensing 16, no. 21: 4003. https://doi.org/10.3390/rs16214003
APA StyleXin, Y., Zhao, C., Li, B., Liu, X., Gao, Y., & Lou, J. (2024). Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images. Remote Sensing, 16(21), 4003. https://doi.org/10.3390/rs16214003