Spectral-Spatial Mamba for Hyperspectral Image Classification
Abstract
:1. Introduction
- (1)
- A spectral-spatial Mamba-based learning framework is proposed for HSI classification, which can effectively utilize Mamba’s computational efficiency and powerful long-range feature extraction capability.
- (2)
- We designed a spectral-spatial token generation mechanism to convert any given HSI cube to spatial and spectral tokens as sequences for input. It improves and combines the spectral and spatial patch partition to fully exploit the spectral-spatial information contained in HSI samples.
- (3)
- A feature enhancement module is designed to enhance the spectral-spatial features and achieve information fusion. By modulating the spatial and spectral tokens using the HSI sample’s center region information, the model can focus on the informative region and conduct spectral-spatial information interaction and fusion within each block.
2. Methodology
2.1. Overview of the State Space Models
2.2. Spectral-Spatial Token Generation
2.3. Spectral-Spatial Mamba Block
3. Results
3.1. Datasets Description
3.2. Experimental Setup
- (1)
- EMP-SVM [16]: this method utilizes EMP for spatial feature extraction followed by a classic SVM for final classification. This approach is commonly employed as a benchmark against deep learning-based methodologies.
- (2)
- CNN: it is a vanilla CNN that simply contains four convolutional layers. It is viewed as a basic spectral-spatial deep learning-based model for HSI classification.
- (3)
- SSRN [30]: it is a 3D deep learning framework that uses three-dimensional convolutional kernels and residual blocks to improve the CNN’s performance of HSI classification.
- (4)
- DBDA [33]: it is an advanced CNN model that integrates a double-branch dual-attention mechanism for enhanced feature extraction. It is used for comparison with transformer-based methodologies, which rely on self-attention mechanisms.
- (5)
- MSSG [55]: it employs a super-pixel structured graph U-Net to learn multiscale features across multilevel graphs. As a graph CNN and global learning model, MSSG is contrasted with the proposed Mamba and patch-based methods.
- (6)
- SSFTT [46]: SSFTT is a spatial-spectral transformer that designs a unique tokenization method and uses CNN to provide local features for the transformer.
- (7)
- LSFAT [56]: it is a local semantic feature aggregation-based transformer that has the advantages of learning multiscale features.
- (8)
- CT-Mixer [45]: it is an aggregated framework of CNN and transformer, which is hoped to effectively utilize both of the advantages of the above two classic models.
3.3. Ablation Experiments
3.3.1. Ablation Experiment with Basic Sequence Model
- (i)
- Spectral-spatial models achieved the highest accuracies with the same basic sequence model, followed by the spatial model, with the spectral model proven to be the least effective. For example, as shown in Table 5, spectral-spatial LSTM achieved better results than spatial LSTM and spectral LSTM, with improvements of 3.76 percentage points and 32.85 percentage points in terms of OA, respectively. Moreover, the spectral-spatial mamba outperformed spatial mamba by 2.77 percentage points, 5.14 percentage points, and 0.0364 in terms of OA, AA, and K on the Pavia University dataset, respectively. The results indicate that the designed spectral-spatial learning framework is effective for different sequence models.
- (ii)
- With the learning framework, the Mamba-based models achieved higher accuracies than the classical sequence models such as LSTM, GRU, and transformer. For example, the spectral-spatial Mamba outperformed spectral-spatial GRU by 0.45 percentage points, 0.52 percentage points, and 0.0046 in terms of OA, AA, and K on the Pavia University dataset, respectively. On the Houston dataset, spectral-spatial Mamba yielded better results than transformer, GRU, and LSTM, with improvements of 0.92 percentage points, 0.49 percentage points, and 0.80 percentage points for OA, respectively. One can also draw similar conclusions for spatial or spectral learning methods on the four datasets. The results indicate that the used Mamba-based sequence models are effective for different learning frameworks.
3.3.2. Ablation Experiment with Feature Enhancement Module
3.4. Classification Results
3.5. Classification Maps
4. Discussion
4.1. Complexity Analysis
4.2. Features Maps
4.3. Comparison of the Proposed Classification Method with Spectral Unmixing-Based Methods
4.4. Limitations and Feature Work
5. Conclusions
- (1)
- Through a comparative analysis of classification results, it is evident that the proposed SS-Mamba can make full use of spatial-spectral information, and it can achieve superior performance for HSI classification tasks.
- (2)
- The ablation experiments show that as a sequence model, Mamba is effective and can gain competitive classification performance for HSI classification when compared with other sequence models like transformer, LSTM, and GRU.
- (3)
- The ablation experiments also show that the designed spectral-spatial learning framework is effective for different sequence models, when compared with spectral-only or spatial-only models.
- (4)
- The designed feature enhancement module is effective to enhance spectral and spatial features and improve the SS-Mamba’s classification performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2013, 31, 45–54. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3140–3146. [Google Scholar] [CrossRef]
- Murphy, R.J.; Schneider, S.; Monteiro, S.T. Consistency of measurements of wavelength position from hyperspectral imagery: Use of the ferric iron crystal field bbsorption at 900 nm as an indicator of mineralogy. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2843–2857. [Google Scholar] [CrossRef]
- Ardouin, J.-P.; Lévesque, J.; Rea, T.A. A demonstration of hyperspectral image exploitation for military applications. In Proceedings of the 2007 10th International Conference on Information Fusion, Quebec, QC, Canada, 9–12 July 2007; pp. 1–8. [Google Scholar]
- Chang, C.-I. Hyperspectral Data Exploitation: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-based edge-preserving features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7140–7151. [Google Scholar] [CrossRef]
- Fu, L.; Li, Z.; Ye, Q.; Yin, H.; Liu, Q.; Chen, X.; Fan, X.; Yang, W.; Yang, G. Learning Robust Discriminant Subspace Based on Joint L2, p-and L2, s-Norm Distance Metrics. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 130–144. [Google Scholar] [CrossRef]
- Lunga, D.; Prasad, S.; Crawford, M.M.; Ersoy, O. Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning. IEEE Signal Process. Mag. 2013, 31, 55–66. [Google Scholar] [CrossRef]
- Huang, H.; Shi, G.; He, H.; Duan, Y.; Luo, F. Dimensionality reduction of hyperspectral imagery based on spatial–spectral manifold learning. IEEE Trans. Cybern. 2019, 50, 2604–2616. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Atli Benediktsson, J.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Jia, S.; Shen, L.; Li, Q. Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1118–1129. [Google Scholar]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J.; Plaza, A.; Bioucas-Dias, J.M. A subspace-based multinomial logistic regression for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2105–2109. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Z.; Zheng, K.; Hong, D.; Yang, H.; Song, M. MSTNet: A multilevel spectral–spatial transformer network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5532513. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Zhang, W.-T.; Li, Y.-B.; Liu, L.; Bai, Y.; Cui, J. Hyperspectral Image Classification Based on Spectral-Spatial Attention Tensor Network. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5500305. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.; Ren, G. Hyperspectral classification using deep belief networks based on conjugate gradient update and pixel-centric spectral block features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4060–4069. [Google Scholar] [CrossRef]
- Yue, G.; Zhang, L.; Zhou, Y.; Wang, Y.; Xue, Z. S2TNet: Spectral-Spatial Triplet Network for Few-Shot Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5501705. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.-I. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2485–2501. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3232–3245. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y. Dual-path siamese CNN for hyperspectral image classification with limited training samples. IEEE Geosci. Remote Sens. Lett. 2020, 18, 518–522. [Google Scholar] [CrossRef]
- Xu, Q.; Xiao, Y.; Wang, D.; Luo, B. CSA-MSO3DCNN: Multiscale octave 3D CNN with channel and spatial attention for hyperspectral image classification. Remote Sens. 2020, 12, 188. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Du, S.; Tan, W.; Gao, F. Three-dimensional densely connected convolutional network for hyperspectral remote sensing image classification. J. Appl. Remote Sens. 2019, 13, 016519. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Duan, C.; Yang, Y.; Wang, X. Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sens. 2020, 12, 582. [Google Scholar] [CrossRef]
- Zahisham, Z.; Lim, K.M.; Koo, V.C.; Chan, Y.K.; Lee, C.P. 2SRS: Two-stream residual separable convolution neural network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5501505. [Google Scholar] [CrossRef]
- Yang, B.; Hu, S.; Guo, Q.; Hong, D. Multisource domain transfer learning based on spectral projections for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3730–3739. [Google Scholar] [CrossRef]
- Dong, S.; Feng, W.; Quan, Y.; Dauphin, G.; Gao, L.; Xing, M. Deep ensemble CNN method based on sample expansion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5531815. [Google Scholar] [CrossRef]
- Yu, C.; Gong, B.; Song, M.; Zhao, E.; Chang, C.-I. Multiview calibrated prototype learning for few-shot hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5544713. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Y.; Tu, B.; Li, Q.; Li, W. Spatial–spectral transformer with cross-attention for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5537415. [Google Scholar] [CrossRef]
- Qi, W.; Huang, C.; Wang, Y.; Zhang, X.; Sun, W.; Zhang, L. Global-local three-dimensional convolutional transformer network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5510820. [Google Scholar] [CrossRef]
- Zou, J.; He, W.; Zhang, H. Lessformer: Local-enhanced spectral-spatial transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5535416. [Google Scholar] [CrossRef]
- He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Trans. Geosci. Remote Sens. 2019, 58, 165–178. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518615. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, M.; Liu, Z.; Song, R. Double attention transformer for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5502105. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, Z.; Yao, W.; Lu, J. CS2DT: Cross spatial–spectral dense transformer for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5510105. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Z.; Zhao, F.; Liu, H.; Chang, Z. Convolution transformer mixer for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6014205. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Wu, K.; Fan, J.; Ye, P.; Zhu, M. Hyperspectral image classification using spectral–spatial token enhanced transformer with hash-based positional embedding. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5507016. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Zhang, T.; Shen, J.; Wang, J.; Li, J. Hyper-ES2T: Efficient spatial–spectral transformer for the classification of hyperspectral remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103005. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, X.; Wang, H.; Zhu, Y.; Wang, Y.B.; Li, M.; Yeung, D.-Y. Earthformer: Exploring space-time transformers for earth system forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 25390–25403. [Google Scholar]
- Gu, A.; Goel, K.; Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv 2021, arXiv:2111.00396. [Google Scholar]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Fu, D.Y.; Dao, T.; Saab, K.K.; Thomas, A.W.; Rudra, A.; Ré, C. Hungry hungry hippos: Towards language modeling with state space models. arXiv 2022, arXiv:2212.14052. [Google Scholar]
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama, S. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Yokoya, N.; Iwasaki, A. Airborne hyperspectral data over Chikusei. Space Appl. Lab. Univ. Tokyo Tokyo Jpn. Tech. Rep. 2016, 5, 5. [Google Scholar]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. Multilevel superpixel structured graph U-Nets for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5516115. [Google Scholar] [CrossRef]
- Tu, B.; Liao, X.; Li, Q.; Peng, Y.; Plaza, A. Local semantic feature aggregation-based transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5536115. [Google Scholar] [CrossRef]
- Fang, B.; Bai, Y.; Li, Y. Combining spectral unmixing and 3D/2D dense networks with early-exiting strategy for hyperspectral image classification. Remote Sens. 2020, 12, 779. [Google Scholar] [CrossRef]
- Guo, A.J.; Zhu, F. Improving deep hyperspectral image classification performance with spectral unmixing. Signal Process. 2021, 183, 107949. [Google Scholar] [CrossRef]
- Li, C.; Cai, R.; Yu, J. An attention-based 3D convolutional autoencoder for few-shot hyperspectral unmixing and classification. Remote Sens. 2023, 15, 451. [Google Scholar] [CrossRef]
No. | Class Name | Training Samples | Test Samples | Total Samples |
---|---|---|---|---|
1 | Alfalfa | 20 | 26 | 46 |
2 | Corn-notill | 20 | 1408 | 1428 |
3 | Corn-mintill | 20 | 810 | 830 |
4 | Corn | 20 | 217 | 237 |
5 | Grass-pasture | 20 | 463 | 483 |
6 | Grass-trees | 20 | 710 | 730 |
7 | Grass-pasture-mowed | 20 | 8 | 28 |
8 | Hay-windrowed | 20 | 458 | 478 |
9 | Oats | 15 | 5 | 20 |
10 | Soybean-notill | 20 | 952 | 972 |
11 | Soybean-mintill | 20 | 2435 | 2455 |
12 | Soybean-clean | 20 | 573 | 593 |
13 | Wheat | 20 | 185 | 205 |
14 | Woods | 20 | 1245 | 1265 |
15 | Buildings-Grass-Trees | 20 | 366 | 386 |
16 | Stone-Steel-Towers | 20 | 73 | 93 |
Total | 315 | 9934 | 10,249 |
No. | Class Name | Training Samples | Test Samples | Total Samples |
---|---|---|---|---|
1 | Asphalt | 20 | 6611 | 6631 |
2 | Meadows | 20 | 18,629 | 18,649 |
3 | Gravel | 20 | 2079 | 2099 |
4 | Trees | 20 | 3044 | 3064 |
5 | Mental sheets | 20 | 1325 | 1345 |
6 | Bare soil | 20 | 5009 | 5029 |
7 | Bitumen | 20 | 1310 | 1330 |
8 | Bricks | 20 | 3662 | 3682 |
9 | Shadow | 20 | 927 | 947 |
Total | 180 | 42,596 | 42,776 |
No. | Class Name | Training Samples | Test Samples | Total Samples |
---|---|---|---|---|
1 | Grass-healthy | 20 | 1231 | 1251 |
2 | Grass-stressed | 20 | 1234 | 1254 |
3 | Grass-synthetic | 20 | 677 | 697 |
4 | Tree | 20 | 1224 | 1244 |
5 | Soil | 20 | 1222 | 1242 |
6 | Water | 20 | 305 | 325 |
7 | Residential | 20 | 1248 | 1268 |
8 | Commercial | 20 | 1224 | 1244 |
9 | Road | 20 | 1232 | 1252 |
10 | Highway | 20 | 1207 | 1227 |
11 | Railway | 20 | 1215 | 1235 |
12 | Parking-lot-1 | 20 | 1213 | 1233 |
13 | Parking-lot-2 | 20 | 449 | 469 |
14 | Tennis-court | 20 | 4008 | 428 |
15 | Running-track | 20 | 640 | 660 |
Total | 300 | 14,729 | 15,029 |
No. | Class Name | Training Samples | Test Samples | Total Samples |
---|---|---|---|---|
1 | Water | 5 | 2840 | 2845 |
2 | Bare soil (school) | 5 | 2854 | 2859 |
3 | Bare soil (park) | 5 | 281 | 286 |
4 | Bare soil (farmland) | 5 | 4847 | 4852 |
5 | Natural plants | 5 | 4292 | 4297 |
6 | Weeds | 5 | 1103 | 1108 |
7 | Forest | 5 | 20,511 | 20,516 |
8 | Grass | 5 | 6510 | 6515 |
9 | Rice field (grown) | 5 | 13,364 | 13,369 |
10 | Rice field (first stage) | 5 | 1263 | 1268 |
11 | Row crops | 5 | 5956 | 5961 |
12 | Plastic house | 5 | 2188 | 2193 |
13 | Manmade-1 | 5 | 1215 | 1220 |
14 | Manmade-2 | 5 | 7659 | 7664 |
15 | Manmade-3 | 5 | 426 | 431 |
16 | Manmade-4 | 5 | 217 | 222 |
17 | Manmade grass | 5 | 1035 | 1040 |
18 | Asphalt | 5 | 796 | 801 |
19 | Paved ground | 5 | 140 | 145 |
Total | 95 | 77,497 | 77,592 |
LSTM | GRU | Transformer | Mamba | ||
Spectral only | OA (%) | 56.93 | 59.41 | 54.53 | 60.95 |
AA (%) | 69.84 | 72.09 | 67.50 | 73.31 | |
K × 100 | 51.81 | 54.65 | 49.12 | 56.27 | |
Spatial only | OA (%) | 86.02 | 84.39 | 83.60 | 87.40 |
AA (%) | 91.17 | 90.17 | 89.41 | 92.35 | |
K × 100 | 84.15 | 82.31 | 81.43 | 85.71 | |
Spectral-spatial | OA (%) | 89.78 | 90.38 | 88.03 | 91.59 |
AA (%) | 94.15 | 94.74 | 93.18 | 95.46 | |
K × 100 | 88.24 | 89.05 | 86.38 | 90.42 |
LSTM | GRU | Transformer | Mamba | ||
Spectral only | OA (%) | 73.40 | 73.53 | 74.55 | 75.52 |
AA (%) | 81.51 | 81.83 | 81.95 | 83.11 | |
K × 100 | 66.34 | 66.55 | 67.78 | 68.88 | |
Spatial only | OA (%) | 89.39 | 90.65 | 92.62 | 93.63 |
AA (%) | 89.11 | 90.05 | 95.28 | 93.49 | |
K × 100 | 86.24 | 87.84 | 90.36 | 91.67 | |
Spectral-spatial | OA (%) | 95.51 | 95.95 | 94.99 | 96.40 |
AA (%) | 97.97 | 97.91 | 97.26 | 98.43 | |
K × 100 | 94.17 | 94.85 | 93.47 | 95.31 |
LSTM | GRU | Transformer | Mamba | ||
Spectral only | OA (%) | 81.32 | 83.81 | 84.61 | 84.86 |
AA (%) | 82.64 | 85.17 | 85.70 | 85.92 | |
K × 100 | 79.81 | 82.51 | 83.37 | 83.51 | |
Spatial only | OA (%) | 87.88 | 88.52 | 89.16 | 90.21 |
AA (%) | 89.42 | 89.87 | 90.20 | 91.31 | |
K × 100 | 86.91 | 87.60 | 88.28 | 89.42 | |
Spectral-spatial | OA (%) | 93.50 | 93.81 | 93.38 | 94.30 |
AA (%) | 94.17 | 94.32 | 93.48 | 94.96 | |
K × 100 | 92.97 | 93.24 | 92.84 | 93.84 |
LSTM | GRU | Transformer | Mamba | ||
Spectral only | OA (%) | 68.73 | 70.00 | 68.28 | 78.38 |
AA (%) | 79.80 | 81.73 | 82.68 | 85.58 | |
K × 100 | 64.38 | 65.83 | 64.27 | 75.39 | |
Spatial only | OA (%) | 92.01 | 93.30 | 93.13 | 93.83 |
AA (%) | 92.76 | 93.77 | 93.37 | 93.84 | |
K × 100 | 90.85 | 92.30 | 92.13 | 92.92 | |
Spectral-spatial | OA (%) | 94.31 | 94.38 | 94.21 | 94.97 |
AA (%) | 94.18 | 94.21 | 94.02 | 94.83 | |
K × 100 | 93.59 | 93.62 | 93.54 | 94.22 |
Indian Pines | Pavia University | Houston | ||||
---|---|---|---|---|---|---|
w/ | w/o | w/ | w/o | w/ | w/o | |
OA (%) | 91.59 | 89.01 | 96.40 | 95.97 | 94.30 | 92.21 |
AA (%) | 95.46 | 93.35 | 98.43 | 98.04 | 94.96 | 93.18 |
K × 100 | 90.42 | 87.51 | 95.31 | 94.75 | 93.84 | 91.58 |
Class | EMP-SVM | CNN | SSRN | DBDA | MSSG | LSFAT | SSFTT | CT-Mixer | SS-Mamba |
Alfalfa | 2.07 | 100.0 ± 0.00 | 9.73 | 12.80 | 2.55 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Corn-notill | 7.45 | 6.22 | 6.00 | 10.74 | 87.42 ± 6.17 | 6.11 | 3.92 | 3.95 | 4.58 |
Corn-mintill | 4.40 | 5.96 | 5.65 | 8.79 | 6.91 | 5.32 | 5.69 | 4.29 | 88.54 ± 5.07 |
Corn | 5.14 | 2.56 | 13.10 | 11.47 | 7.07 | 1.23 | 2.43 | 1.11 | 99.49 ± 0.76 |
Grass-pasture | 3.85 | 3.21 | 98.00 ± 1.96 | 3.74 | 6.28 | 2.90 | 2.09 | 1.54 | 1.99 |
Grass-trees | 4.63 | 2.53 | 1.40 | 1.25 | 1.78 | 3.89 | 1.26 | 3.47 | 98.34 ± 1.53 |
Grass-pasture-mowed | 6.12 | 100.0 ± 0.00 | 18.70 | 28.22 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Hay-windrowed | 3.25 | 0.59 | 0.83 | 0.58 | 0.20 | 0.97 | 1.22 | 0.07 | 0.00 |
Oats | 6.00 | 100.0 ± 0.00 | 20.56 | 11.22 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Soybean-notill | 7.20 | 3.10 | 6.45 | 8.08 | 8.70 | 4.89 | 89.66 ± 4.47 | 4.44 | 3.92 |
Soybean-mintill | 4.69 | 5.47 | 3.50 | 95.43 ± 4.19 | 8.83 | 3.98 | 5.24 | 3.17 | 5.87 |
Soybean-clean | 7.68 | 6.23 | 10.73 | 13.45 | 12.48 | 4.94 | 4.99 | 6.87 | 93.32 ± 4.74 |
Wheat | 1.81 | 0.89 | 3.82 | 5.35 | 100.0 ± 0.00 | 0.32 | 2.15 | 1.89 | 1.62 |
Woods | 5.68 | 1.71 | 1.14 | 1.05 | 99.32 ± 0.96 | 1.18 | 1.18 | 1.48 | 1.40 |
Buildings-Grass-Trees | 8.55 | 2.60 | 7.75 | 5.46 | 97.32 ± 3.96 | 3.74 | 2.02 | 2.59 | 3.16 |
Stone-Steel-Towers | 4.71 | 0.91 | 4.48 | 12.75 | 0.68 | 1.67 | 100.0 ± 0.00 | 0.63 | 0.82 |
OA (%) | 2.25 | 1.72 | 1.38 | 3.06 | 2.03 | 1.38 | 1.58 | 1.28 | 91.59 ± 1.85 |
AA (%) | 1.31 | 0.72 | 2.08 | 2.47 | 1.46 | 0.62 | 0.83 | 0.72 | 95.46 ± 0.90 |
K × 100 | 2.50 | 1.93 | 1.55 | 3.43 | 2.30 | 1.55 | 1.78 | 1.44 | 90.42 ± 2.08 |
Class | EMP-SVM | CNN | SSRN | DBDA | MSSG | LSFAT | SSFTT | CT-Mixer | SS-Mamba |
Asphalt | 6.60 | 4.53 | 1.71 | 98.74 ± 1.20 | 3.69 | 3.78 | 6.15 | 5.26 | 3.41 |
Meadows | 3.26 | 3.49 | 0.81 | 99.51 ± 0.36 | 5.91 | 3.17 | 3.60 | 4.88 | 4.27 |
Gravel | 4.51 | 1.27 | 8.17 | 12.10 | 99.97 ± 0.10 | 4.43 | 4.13 | 4.19 | 0.54 |
Trees | 2.44 | 1.39 | 2.01 | 7.92 | 1.38 | 4.46 | 5.25 | 6.80 | 98.92 ± 0.55 |
Mental sheets | 0.26 | 0.52 | 0.27 | 0.63 | 100.0 ± 0.00 | 0.89 | 1.06 | 0.67 | 100.0 ± 0.00 |
Bare soil | 6.31 | 0.63 | 3.69 | 5.45 | 1.58 | 0.82 | 3.90 | 99.53 ± 1.08 | 1.63 |
Bitumen | 1.56 | 0.68 | 12.03 | 8.83 | 100.0 ± 0.00 | 0.76 | 0.67 | 0.67 | 0.20 |
Bricks | 3.96 | 0.80 | 7.36 | 6.47 | 98.99 ± 1.43 | 3.98 | 7.99 | 2.75 | 0.95 |
Shadow | 99.85 ± 0.12 | 1.33 | 0.94 | 1.69 | 0.93 | 2.30 | 2.17 | 3.14 | 0.05 |
OA (%) | 2.22 | 1.74 | 1.17 | 1.85 | 2.55 | 1.29 | 1.92 | 2.85 | 96.40 ± 2.27 |
AA (%) | 1.57 | 0.74 | 2.07 | 2.36 | 0.83 | 0.54 | 1.24 | 1.77 | 98.43 ± 0.77 |
K × 100 | 2.76 | 2.23 | 1.53 | 2.41 | 3.24 | 1.63 | 2.47 | 3.63 | 95.31 ± 2.92 |
Class | EMP-SVM | CNN | SSRN | DBDA | MSSG | LSFAT | SSFTT | CT-Mixer | SS-Mamba |
Grass-healthy | 4.30 | 4.56 | 96.25 ± 2.94 | 5.59 | 4.63 | 4.33 | 3.62 | 5.13 | 4.33 |
Grass-stressed | 5.72 | 2.21 | 2.48 | 3.78 | 2.36 | 1.98 | 98.58 ± 1.13 | 2.60 | 2.91 |
Grass-synthetic | 1.10 | 1.41 | 0.22 | 100.0 ± 0.00 | 1.26 | 1.20 | 0.60 | 4.20 | 100.0 ± 0.00 |
Tree | 2.94 | 1.81 | 4.13 | 2.17 | 1.74 | 1.78 | 3.19 | 4.20 | 99.17 ± 1.67 |
Soil | 4.52 | 5.11 | 2.36 | 2.42 | 3.22 | 0.29 | 99.99 ± 0.02 | 3.08 | 5.08 |
Water | 3.42 | 3.52 | 7.83 | 2.23 | 3.64 | 3.66 | 98.42 ± 3.86 | 3.53 | 3.63 |
Residential | 4.67 | 2.41 | 92.10 ± 2.47 | 3.62 | 3.66 | 2.43 | 5.32 | 3.91 | 2.06 |
Commercial | 4.90 | 6.64 | 3.49 | 94.88 ± 3.19 | 5.81 | 6.19 | 5.19 | 4.83 | 4.35 |
Road | 6.81 | 3.94 | 3.83 | 2.27 | 92.26 ± 3.16 | 5.52 | 6.79 | 2.31 | 2.02 |
Highway | 4.01 | 4.12 | 6.78 | 3.83 | 2.10 | 2.86 | 3.33 | 99.09 ± 1.52 | 1.94 |
Railway | 7.72 | 4.71 | 1.94 | 2.10 | 5.63 | 5.38 | 95.82 ± 3.23 | 6.17 | 6.14 |
Parking-lot-1 | 6.14 | 5.48 | 4.73 | 93.15 ± 3.27 | 6.26 | 5.62 | 4.87 | 5.74 | 5.57 |
Parking-lot-2 | 5.90 | 2.62 | 5.65 | 6.06 | 2.48 | 4.01 | 97.75 ± 2.10 | 5.39 | 3.30 |
Tennis-court | 2.53 | 0.22 | 3.29 | 2.59 | 0.15 | 0.25 | 0.22 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Running-track | 0.46 | 1.06 | 1.96 | 2.47 | 1.59 | 0.09 | 100.0 ± 0.00 | 2.38 | 100.0 ± 0.00 |
OA (%) | 1.36 | 0.92 | 1.05 | 0.92 | 1.02 | 0.93. | 0.97 | 1.21 | 94.30 ± 1.10 |
AA (%) | 1.26 | 0.67 | 1.12 | 0.87 | 0.85 | 0.74 | 0.85 | 1.04 | 94.96 ± 0.89 |
K × 100 | 1.47 | 0.99 | 1.13 | 1.00 | 1.10 | 1.01 | 1.05 | 1.31 | 93.84 ± 1.20 |
Class | EMP-SVM | CNN | SSRN | DBDA | MSSG | LSFAT | SSFTT | CT-Mixer | SS-Mamba |
Water | 83.55 10.60 | 92.99 4.40 | 83.51 12.94 | 83.44 13.8 | 94.58 4.95 | 94.77 4.82 | 93.86 6.35 | 90.75 5.96 | 96.00 ± 2.62 |
Bare soil (school) | 93.83 3.84 | 99.54 0.53 | 98.07 2.02 | 99.65 0.51 | 99.72 0.32 | 99.73 0.29 | 99.38 0.53 | 99.76 0.39 | 100.0 ± 0.00 |
Bare soil (park) | 98.01 2.62 | 99.57 0.98 | 28.93 10.75 | 31.63 15.77 | 100.0 ± 0.00 | 99.50 0.99 | 99.03 1.70 | 99.89 0.32 | 99.72 0.85 |
Bare soil (farmland) | 50.19 20.7 | 82.66 16.10 | 90.14 ± 11.38 | 87.22 10.73 | 83.77 14.7 | 81.21 15.6 | 82.93 16.13 | 83.00 18.13 | 84.44 17.5 |
Natural plants | 96.70 2.76 | 99.95 0.02 | 95.10 3.32 | 96.53 3.24 | 99.99 0.02 | 100.0 ± 0.00 | 99.97 0.05 | 99.49 0.59 | 99.98 0.03 |
Weeds | 87.28 12.13 | 95.62 3.64 | 73.53 22.89 | 85.41 24.14 | 95.69 3.72 | 94.89 3.55 | 95.17 3.75 | 95.26 ± 3.85 | 95.01 3.60 |
Forest | 82.13 7.49 | 99.97 0.05 | 95.66 3.70 | 99.37 0.87 | 99.96 0.03 | 99.67 0.54 | 96.73 9.24 | 99.92 0.07 | 100.0 ± 0.00 |
Grass | 91.93 2.72 | 93.05 2.99 | 96.71 4.96 | 99.90 ± 0.27 | 92.91 3.52 | 91.95 2.20 | 92.40 3.60 | 93.78 3.25 | 97.42 3.12 |
Rice field (grown) | 79.34 20.97 | 94.59 10.58 | 96.57 3.77 | 99.43 ± 0.46 | 91.72 12.0 | 93.43 1.12 | 88.42 13.33 | 86.40 13.20 | 94.08 11.0 |
Rice field (first stage) | 99.26 0.55 | 99.94 0.17 | 81.93 9.86 | 89.73 5.23 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Row crops | 66.40 14.47 | 82.22 10.90 | 94.58 ± 11.37 | 97.42 3.29 | 83.82 11.0 | 82.52 10.40 | 83.43 14.00 | 85.10 10.49 | 83.96 9.60 |
Plastic house | 69.20 11.50 | 84.48 9.13 | 91.50 6.20 | 96.78 ± 4.48 | 86.69 8.30 | 68.08 22.0 | 79.03 12.18 | 90.79 10.63 | 85.37 8.23 |
Manmade-1 | 95.09 1.97 | 95.97 1.48 | 96.16 7.62 | 98.75 2.27 | 96.22 1.66 | 96.93 1.12 | 97.15 ± 1.79 | 96.44 1.78 | 96.36 1.62 |
Manmade-2 | 86.85 11.24 | 89.49 10.80 | 99.80 ± 0.33 | 99.60 7.82 | 94.45 6.96 | 92.73 9.58 | 91.19 10.60 | 93.04 8.38 | 92.95 7.95 |
Manmade-3 | 91.01 17.23 | 91.78 8.43 | 93.87 9.69 | 98.12 ± 5.20 | 97.96 4.20 | 96.31 10.98 | 93.73 12.62 | 95.59 10.38 | 93.97 130 |
Manmade-4 | 93.73 7.85 | 95.67 6.04 | 93.60 7.32 | 98.24 ± 3.48 | 94.70 7.96 | 95.48 8.05 | 94.19 4.49 | 94.52 8.03 | 97.33 7.71 |
Manmade grass | 93.39 6.38 | 96.06 8.39 | 98.35 1.65 | 96.62 2.32 | 99.71 3.46 | 98.40 4.12 | 99.74 0.75 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Asphalt | 88.52 ± 12.17 | 83.98 11.2 | 69.53 13.85 | 72.33 13.82 | 85.43 12.20 | 79.53 18.73 | 78.37 19.95 | 76.36 17.46 | 85.14 13.50 |
Paved ground | 88.07 7.69 | 98.86 3.43 | 24.50 16.27 | 35.81 35.81 | 100.0 ± 0.00 | 99.93 0.21 | 99.29 0.95 | 100.0 ± 0.00 | 100.0 ± 0.00 |
OA (%) | 81.58 4.64 | 93.87 2.28 | 91.46 3.62 | 94.39 2.39 | 94.28 2.64 | 93.37 2.61 | 92.05 3.26 | 93.17 3.25 | 94.97 ± 2.34 |
AA (%) | 86.02 3.06 | 93.50 1.40 | 84.32 2.98 | 88.39 2.24 | 94.59 1.63 | 92.90 1.73 | 92.84 1.71 | 93.69 2.14 | 94.83 ± 1.58 |
K × 100 | 78.97 5.31 | 92.95 2.60 | 90.18 4.13 | 93.55 2.73 | 93.43 3.01 | 92.39 2.97 | 90.87 3.70 | 92.16 3.69 | 94.22 ± 2.67 |
CT-Mixer | SS-LSTM | SS-GRU | SS-Transformer | SS-Mamba | |
---|---|---|---|---|---|
Param. | 0.77 M | 1.00 M | 0.81 M | 0.48 M | 0.47 M |
Test Time | 8.61 ms | 7.77 ms | 9.14 ms | 11.05 ms | 10.45 ms |
OA (%) | 94.33 | 95.51 | 95.95 | 94.99 | 96.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Chen, Y.; He, X. Spectral-Spatial Mamba for Hyperspectral Image Classification. Remote Sens. 2024, 16, 2449. https://doi.org/10.3390/rs16132449
Huang L, Chen Y, He X. Spectral-Spatial Mamba for Hyperspectral Image Classification. Remote Sensing. 2024; 16(13):2449. https://doi.org/10.3390/rs16132449
Chicago/Turabian StyleHuang, Lingbo, Yushi Chen, and Xin He. 2024. "Spectral-Spatial Mamba for Hyperspectral Image Classification" Remote Sensing 16, no. 13: 2449. https://doi.org/10.3390/rs16132449